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1. Introduction to Expert Systems 
 

 

 

Expert systems are computer programs that are constructed to do 

the kinds of activities that human experts can do such as design, compose, 

plan, diagnose, interpret, summarize, audit, give advice. The work such a 

system is concerned with is typically a task from the worlds of business  

or engineering/science or government. 

Expert system programs are usually set up to operate in a manner 

that will be perceived as intelligent: that is, as if there were a human 

expert on the other side of the video terminal. 

A characteristic body of programming techniques give these 

programs their power. Expert systems generally use automated reasoning 

and the so-called weak methods, such as search or heuristics, to do their 

work. These techniques are quite distinct from the well-articulated 

algorithms and crisp mathematical procedures more traditional 

programming. 

 

 

 

 

 

 

 

 

 
Figure (1) the vectors of expert system development 
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As shown in Figure(1), the development of expert systems is based 

on two distinct, yet complementary, vectors: 

 

 

 

a. New programming technologies that allow us to deal with knowledge 

and inference with ease. 

b. New design and development methodologies that allow us to 

effectively use these technologies to deal with complex problems. 

The successful development of expert systems relies on a well- 

balanced approach to these two vectors. 

 

 

2. Expert System Using 
 

 

 

Here is  a  short  nonexhaustive  list  of  some  of  the  things  expert 

systems have been used for: 

 

 To approve loan applications, evaluate insurance risks, and 

evaluate investment opportunities for the financial community. 

 To help chemists find the proper sequence of reactions to create 

new molecules. 

 To configure the hardware and software in a computer to match the 

unique arrangements specified by individual customers. 

 To diagnose and locate faults in a telephone network from tests and 

trouble reports. 

 To identify and correct malfunctions in locomotives. 
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 To help geologists interpret the data from instrumentation at the 

drill tip during oil well drilling. 

 To help physicians diagnose and treat related groups of diseases, 

such as infections of the blood or the different kinds of cancers. 

 To help navies interpret hydrophone data from arrays of 

microphones on the ocean floor that are used t\u the surveillance of 

ships in the vicinity. 

 To figure out a chemical compound's molecular structure from 

experiments with mass spectral data and nuclear magnetic 

resonance. 

 To examine and summarize volumes of rapidly changing data that 

are generated too last for human scrutiny, such as telemetry data 

from landsat satellites. 

 

Most of these applications could have been done in more traditional 

ways as well as through an expert system, but in all these cases there  

were advantages to casting them in the expert system mold. 

In some cases, this strategy made the program more human oriented. 

In others, it allowed the program to make better judgments. 

In others, using an expert system made the program easier to maintain 

and upgrade. 

 

 

3. Expert Systems are Kind of AI ftrograms 
 

 

 

 

 

Expert systems occupy a narrow but very important corner of the 

entire programming establishment. As part of saying what they are, we 
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need to describe their place within the surrounding framework of 

established programming systems. 

Figure(2) shows the three programming styles that will most 

concern us. Expert systems are part of a larger unit we might call AI 

(artificial intelligence) programming. Procedural programming is what 

everyone learns when they first begin to use BASIC or PASCAL or 

FORTRAN. Procedural programming and A.I programming are quite 

different in what they try to do and how they try to do it. 

 

 
 

 

 

 

Figure( 2) three kinds of programming 

 

 

In traditional programming (procedural programming), the 

computer has to be told in great detail exactly what to do and how to do  

it. This style has been very successful for problems that are well defined. 

They usually are found in data processing or in engineering or scientific 

work. 

AI programming sometimes seems to have been defined by default, 

as anything that goes beyond what is easy to do in traditional procedural 
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programs, but there are common elements in most AI programs. What 

characterizes these kinds of programs is that they deal with complex 

problems that are often poorly understood, for which there is no crisp 

algorithmic solution, and that can benefit from some sort of symbolic 

reasoning. 

There are substantial differences in the internal mechanisms of the 

computer languages used for these two sorts of problems. Procedural 

programming focuses on the use of the assignment statement (" = " or ":- 

") for moving data to and from fixed, prearranged, named locations in 

memory. These named locations are the program variables. It also 

depends on a characteristic group of control constructs that tell the 

computer what to do. Control gets done by using 

if-then-else goto 

do-while procedure calls 

repeat-until sequential execution (as default) 

AI programs are usually written in languages like Lisp and Prolog. 

Program variables in these languages have an ephemeral existence on the 

stack of the underlying computer rather than in fixed memory locations. 

Data manipulation is done through pattern matching and list building.  

The list techniques are deceptively simple, but almost any data structure 

can be built upon this foundation. Many examples of list building will be 

seen later when we begin to use Prolog. AI programs also use a different 

set of control constructs. They are : 

 

procedure calls 

sequential execution 

recursion 
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4. Expert System, Development Cycle 
 

 

Define problems and goals 

Design and construct prototype 

Test / use system 

Analyze and correct shortcoming 

Are design 
assumptions 

still correct 

  No  

No Ready for 
final 

evaluation 

Yes 
Final 

evaluation 

failed 

Begin 

 

The explanation mechanism allows the program to explain its 

reasoning to the user, these explanations include justification for the 

system's conclusions, explanation of why the system needs a particular 

piece of data. Why questions and How questions. Figure (3) below shows 

the exploratory cycle for rule based expert system. 
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Figure( 3) The exploratory cycle for expert system 
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5. Expert System Architecture and Components 
 

 

 

The architecture of the expert system consists of several components as 

shown in figure (4) below: 

 

 

Figure( 4)Expert system architecture 

 
 

5.1. User Interface 

The user interacts with the expert system through a user interface 

that make access more comfortable for the human and hides much of the 

system complexity. The interface styles includes questions and answers, 

menu-driver, natural languages, or graphics interfaces. 

 
5.2. Explanation ftrocessor 

The explanation part allows the program to explain its reasoning to 

the user. These explanations include justifications for the system's 

conclusion (HOW queries), explanation of why the system needs a 

particular piece of data (WHY queries). 
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5.3. Knowledge Base 

The heart of the expert system contains the problem solving 

knowledge (which defined as an original collection of processed 

information) of the particular applications, this knowledge is represented 

in several ways such as if-then rules form. 

 
 

5..4 Inference Engine 

The inference engine applies the knowledge to the solution  of 

actual problems. It s the interpreter for the knowledge base. The inference 

engine performs the recognize act control cycle. 

The inference engine consists of the following components:- 

1. Rule interpreter. 

2. Scheduler 

3. HOW process 

4. WHY process 

5. knowledge base interface. 

5.5. Working Memory 

It  is  a part  of memory used  for matching  rules  and calculation. 

When the work is finished this memory will be raised. 

 

 

6. Systems that Explain their Actions 
 

An interface system that can explain its behavior on demand will seem 

much more believable and intelligent to its users. In general, there are two 

things a user might want to know about what the system is doing. When 

the system asks for a piece of evidence, the user might want to ask, 

 

"Why do you want it?" 
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When the system states a conclusion, the user will frequently want to ask, 

"How did you arrive at that conclusion?" 

This section explores simple mechanisms that accommodate both 

kinds of questioning. HOW and WHY questions are different in several 

rather obvious ways that affect how they can be handled in an automatic 

reasoning program. There are certain natural places where these questions 

are asked, and they are at opposite ends of the inference tree. It is 

appropriate to let the user ask a WHY question when the system is 

working with implications at the bottom of the tree; that is: when it will  

be necessary  to ask the user to supply data. 

The system never needs to ask for additional information when it   

is working in the upper parts of the tree. These nodes represent 

conclusions that the system has figured out. rather than asked for. so a 

WHY question is not pertinent. 

To be able to make the conclusions at the top of the tree, however, 

is the purpose for which all the reasoning is being done. The system is 

trying to deduce information about these conclusions.  It is appropriate   

to ask a HOW question when the system reports the results of its 

reasoning about such nodes. 

There is also a difference in timing of the questions. WHY 

questions will be asked early on and then at unpredictable points all 

throughout the reasoning. The system asks for information when it 

discovers that it needs it. The. time for the HOW questions usually comes 

at the end when all the reasoning is complete and the system is reporting 

its results. 



 

 

domains 
 

rxnlist = reactions*. 
 

reactions = rxn(symbol, ls, integer, integer). 

ls = symbol*. 

chemicalList= chemicalForm*. 
 

chemicalForm= chemical(symbol, rxnList, integer, integer). 

Li= integer*. 

predicates 
 

rxn(symbol, ls, integer, integer). 

rawmaterial(symbol, integer, integer). 

chemical(symbol, rxnlist, integer, integer). 

all_chemical(symbol, chemicalList). 

best_chemical(symbol, chemicalForm). 

one_chemical(symbol, chemicalForm). 

append(rxnlist, rxnlist, rxnlist). 

min(chemicalList, chemicalForm). 

run(symbol). 

clauses 
 

rxn(a, [b1, c1], 12, 60). 
 

rxn(b1, [d1, e1], 5, 45). 
 

rxn(c1, [f1, g1], 3, 15). 
 
 
 

rxn(a, [b2, c2], 10, 50). 
 

rxn(b2, [d2, e2], 2, 20). 
 

rxn(c2, [f2, g2], 6, 30). 



 

 

 
 

rawmaterial(d1, 2, 0). 
 

rawmaterial(e1, 0, 0). 
 

rawmaterial(f1, 2, 0). 
 

rawmaterial(g1, 0, 0). 
 
 
 

rawmaterial(d2, 0, 0). 
 

rawmaterial(e2, 1, 0). 
 

rawmaterial(f2, 1, 0). 
 

rawmaterial(g2, 0, 0). 
 
 
 

chemical(Y, [], Cost, Time):- rawmaterial(Y, Cost, Time). 

chemical(Y, L, Ct, T):- 

rxn(Y, [X1, X2], C, T1), chemical(X1, L1, C1, T2), chemical(X2, L2, C2, T3), 

append(L1, L2, Q), Ct = C+C1+C2, 

T = T+T2+T3, append([rxn(Y, [X1, X2], C, T1)], Q, L). 
 
 
 

best_chemical(Y, M):- all_chemical(Y, X), min(X, M). 
 
 
 

all_ chemical(Y, X):- findall(S, one_chemical(Y, S), X). 
 
 
 

one_chemical(Y, chemical(Y, L, Ct, T)):- chemical(Y, L, Ct, T). 
 
 
 

append([], L, L):-!. 
 

append([H|T], L, [H|T1]):- append(T, L, T1). 



 

 

 
 

min([chemical(Y, L, Ct, T)], chemical(Y, L, Ct, T)). 
 

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L, Ct, Time)):- 
 

min(T, chemical(Y1, L1, C1, Time1)), Ct <= C1. 

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L2, Ct2, Time2)):- 

min(T, chemical(Y, L2, Ct2, Time2)), Ct2 <= Ct. 
 
 
 

run(X):- write(“ chemical synthesis is:”), nl, chemical(X, L, Cost, Time), 

write(L, “\n with total cost =”, Cost, “ Time =”, Time), nl, fail. 

run(X):- write(“\n Best chemical synthesis:”), nl, best_chemical(X, Y), write(Y), nl. 

Goal: run(a). 

chemical synthesis: 
 

[rxn(“a”, [“b1”, “c1”], 12, 60), rxn(“b1”, [“d1”, “e1”], 5, 45), rxn(“c1”, [“f1”, “g1”], 3, 15)] 
 

with total cost = 24 time = 120 
 

[rxn(“a”, [“b2”, “c2”], 10, 50), rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”, [“f2”, “g2”], 6, 30)] 
 

with total cost = 20 time = 100 

best chemical synthesis : 

chemical(“a”, [rxn(“a”, [“b2”, “c2”], 10, 50) rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”, [“f2”, “g2”], 

6, 30)], 20, 100) 
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Controlling the Reasoning Strategy 
 

Classification Program with Backward Chaining (Bird, Beast, Fish) Version1 
 
 

database 

db_confirm(symbol, symbol) 

db_denied(symbol, symbol) 

clauses 

guess_animal :- identify(X), write(“Your animal is a(n) ”,X),!. 
 
 

identify(giraffe) :- 
 

it_is(ungulate), 

confirm(has, long_neck), 

confirm(has, long_legs), 

confirm(has, dark_spots) 

identify(zebra) :- 
 

it_is(ungulate), 

confirm(has, black_strips),!. 

identify(cheetah) :- 
 

it_is(mammal), 
 

it-is(carnivorous), 

confirm(has, tawny_color), 

confirm(has, black_spots),!. 
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identify(tiger) :- 
 

it_is(mammal), 
 

it-is(carnivorous), 

confirm(has, tawny_color), 

confirm(has, black_strips),!. 

 

 

identify(eagle) :- 
 

it_is(bird), 

confirm(does, fly), 

it-is(carnivorous), 

confirm(has, use_as_national_symbol),!. 
 

identify(ostrich) :- 
 

it_is(bird), 

not(confirm(does, fly)), 

confirm(has, long_neck), 

confirm(has, long_legs),!. 

identify(penguin) :- 
 

it_is(bird), 

not(confirm(does, fly)), 

confirm(does, swim), 

confirm(has, black_and_white_color),!. 
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identify(blue_whale) :- 
 

it_is(mammal), 
 

not(it-is(carnivorous)), 

confirm(does, swim), 

confirm(has, huge_size),!. 

identify(octopus) :- 
 

not(it_is(mammal), 

it_is(carnivorous), 

confirm(does, swim), 

confirm(has, tentacles),!. 

identify(sardine) :- 
 

it_is(fish), 
 

confirm(has, small_size), 

confirm(has, use_in_sandwiches),!. 

identify(unknown). /* Catch-all rule if nothing else works. */ 
 
 

it-is(bird):- 
 

confirm(has, feathers), 

confirm(does, lay_eggs),! 

it-is(fish):- 
 

confirm(does, swim), 

confirm(has, fins),!. 
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it-is(mammal):- 
 

confirm(has, hair),!. 

it-is(mammal):- 

confirm(does, give_milk),!. 

it-is(ungulate):- 

it-is(mammal), 

confirm(has, hooves), 

confirm(does, chew_cud),!. 

it-is(carnivorous):- 
 

confirm(has, pointed_teeth),!. 

it-is(carnivorous):- 

confirm(does, eat_meat),!. 
 
 

confirm(X,Y):- db_confirm(X,Y),!. 

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y). 

 
 

denied(X,Y):- db-denied(X,Y),!. 
 
 

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y, Reply). 
 
 

remember(X, Y, yes):- asserta(db_confirm(X, Y)). 

remember(X, y, no):- assereta(db_denied(X, Y)), fail. 
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Controlling the Reasoning Strategy 
 

Classification Program with Forward Chaining (Bird, Beast, Fish) Version2 
 
 

database 

db_confirm(symbol, symbol) 

db_denied(symbol, symbol) 

clauses 

guess_animal :- 
 

find_animal, have_found(X), 

write(“Your animal is a(n) ”,X),nl,!. 

 
 

find_animal:- test1(X), test2(X,Y), test3(X,Y,Z), test4(X,Y,Z,_),!. 

Find_animal. 

 
 

test1(m):- it_is(mammal),!. 

test1(n). 

 
 

test2(m,c):- it_is(carnivorous),!. 

test2(m,n). 

test2(n,w):- confirm(does, swim),!. 

test2(n,n). 
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test3(m,c,s):- confirm(has, strips), 
 

asserta(have_found(tiger)),!. 

test3(m,c,n):- asserta(have_found(cheetah)),!. 

test3(m,n,l):- not(confirm(does, swim)), 

not(confirm(does, fly)),!. 

test3(m,n,n):- asserta(have_found(blue_whale)),!. 

test3(n,n,f):- confirm(does, fly), 

asserta(have_found(eagle)),!. 

test3(n,n,n):- asserta(have_found(ostrich)),!. 

test3(n,w,t):- cofirm(has, tentacles), 

asserta(have_found(octopus)),!. 
 

test3(n,w,n). 
 
 

test4(m,n,l,s):- confirm(has, strips), 
 

asserta(have_found(zebra)),!. 

test4(m,n,l,n):- asserta(have_found(giraffe)),!. 

test4(n,w,n,f):- confirm(has, feathers), 

asserta(have_found(penguin)),!. 

test4(n,w,n,n):- asserta(have_found(sardine)),!. 

 
 

it-is(bird):- confirm(has, feathers), 
 

confirm(does, lay_eggs),!. 
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it-is(fish):- confirm(does, swim), 
 

confirm(has, fins),!. 
 

it-is(mammal):- confirm(has, hair),!. 
 

it-is(mammal):- confirm(does, give_milk),!. 

it-is(ungulate):- it-is(mammal), 

confirm(has, hooves), 

confirm(does, chew_cud),!. 

it-is(carnivorous):- confirm(has, pointed_teeth),!. 

it-is(carnivorous):- confirm(does, eat_meat),!. 

 
 

confirm(X,Y):- db_confirm(X,Y),!. 

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y). 

 
 

denied(X,Y):- db-denied(X,Y),!. 
 
 

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y, Reply). 
 
 

remember(X, Y, yes):- asserta(db_confirm(X, Y)). 

remember(X, y, no):- assereta(db_denied(X, Y)), fail. 
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Conclusions 
 

1. Code written for backward chaining is clearer. All the rules in version 1 of 

BBF have a nice declarative reading. They correspond nicely to most 

people’s intuitive idea of how things should be described when they are 

part of some kind of hierarchy. The description is top down. 

2. Code written for backward reasoning is also much easier to modify or 

expand. It is apparent without much thought what would have to be done 

to add another animal (class) to the structure: just define it. But it is not 

always clear where to attach another instance to a forward reasoning rule 

structure. In fact, if a number of additions have to be made, all the rules 

may have to be redone to accommodate the additions and at the same 

time to maintain the same testing efficiency as was there before. 

3. Code for the backward reasoning system will be easier to develop in the 

first place because the built-in inference method in prolog is backward 

chining. 

Study Question 
 

1. Show what would be required to add these two animals to both versions 

of BBF: 

 The camel, an ungulate with a hump. 

 The unicorn, an ungulate with a single horn. 

2. By examining the listings of the BBF programs, calculate the average 

number of questions that will be asked to identify an animal in the forward 

chaining versions and in the backward chaining version. 

3. Find a set of rules that describe what to do when your computer will not 

started. Organize the appropriate rules into both a backward chaining and 

forward chaining systems (version 1 & 2). 
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Programs that Work under Uncertainty factor 

Approximation Reasoning and Bipolar States 

 

Logical Implications 
 

• Simple Implication 

ct(c) = ct(e) * ct(imp) 

• AND Implication 
 

ct(c) = min(ct(e1), ct(e2)) * ct(imp) 
 

• OR Implication 
 

ct(c) = max(ct(e1), ct(e2)) * ct(imp) 

 

 

Bipolar Calculation Values 
 

 If ct1(c) is +ve and ct2(c) is +ve (+ +) then 

Ct(c) = (ct1(c) + ct2(c)) - (ct1(c) * ct2(c)) 

 If ct1(c) is -ve and ct2(c) is -ve (- -) then 

Ct(c) = (ct1(c) + ct2(c)) + (ct1(c) * ct2(c)) 

 If [ct1(c) is +ve and ct2(c) is -ve (+ -)] or 

[ct1(c) is -ve and ct2(c) is +ve (- +)] then 

Ct(c) = (ct1(c) + ct2(c)) / (1-min(abs(ct1(c))), (abs(ct2(c))) 

 

 

Reversible and non reversible Rules 
 

Reversible 
 

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve 

 If ct(c) is +ve and prefaced by not then Ct(c) is -ve 



2 

 

 

Non reversible 
 

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve 

 If ct(c) is +ve and prefaced by not then Ct(c) = 1- (+ve) 

 

 

Knowledge Base 
 

• hypothesis_node(C). 
 

• terminal_node(e). 
 

• imp(logic op, rule type, conclusion name, left condition sign, left 

condition name, right condition sign, right condition name, imp 

value) 

 

 

 

 
Systems that Explain their Actions 

The HOW & WHY Facilities 

 

Consider the following Inference Network (fuzzy net) 
 

If e1 and e2 then c1   (imp= 0.8) rev 

If not(e3) or c3 then c2 (imp= 0.9) rev 

If e4 and e5 then c3  (imp= 0.8) rev 

If c1 or c2 then c4  (imp= 0.8) rev 

 

 

Answering WHY Questions 
 

S: Type w(why) or give the certainty for node e4 

U: w 

S: Attempting to establish c3 via the implication 

e4 and e5  c3 
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Type w(why) or give the certainty for node e4 

U: w 

S: Attempting to establish c2 via the implication 

not e3 or c3  c2 

Type w(why) or give the certainty for node e4 

U: w 

S: Attempting to establish c4 via the implication 

c1 or c2  c4 

Type w(why) or give the certainty for node e4 

U: 0.85 

(Why Stack Description) 
 

Why stack description is explained through the lecture. 

 

 

Answering HOW Question 
 

S: Type h(how) nodename, or c (to continue). 

U: h c4 

S: Concluded c4 with certainty of 0.68 from 
 

c1 or c2  c4 
 

The rule is reversible 

Certainty of c1 is 0.6 

Certainty of c2 is 0.85 

The certainty of the implication is 0.8 
 

Used alone the rule suggests a certainty of 0.68 

Type h(how) nodename, or c (to continue). 
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U: h c1 
 

S: Concluded c1 with certainty of 0.6 from 

e1 or e2  c1 

The rule is reversible 

Certainty of e1 is 0.75 

Certainty of e2 is 0.65 

The certainty of the implication is 0.8 
 

Used alone the rule suggests a certainty of 0.6 

Type h(how) nodename, or c (to continue). 

 
 

Consider the following Production rules: 
 

if not(e3) or e4 then c1 (imp = 1.0) nrev 

if not(e1) and not(e2) then c2 (imp = 0.8) rev 

if c1 or e5 then c3 (imp = 0.7) nrev 

if not(e6) then c4 (imp = 0.9) nrev 
 

if e7 and e8 then c5 (imp = 0.8) nrev 
 

if not(e9) then c5 (imp = 0.9) rev 
 

if c2 then c6 (imp = 0.9) rev 
 

if c3 then c6 (imp = 0.9) nrev 
 

if c4 and c5 then c6 (imp = 0.85) nrev 
 

e1= 0.2 e2= -0.2 e3= -0.2 e4= 0.7 e5= -0.5 e6= -0.8 e7= 0.8 
 

e8= 0.8 e9= -0.7 
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Systems That Depend on Reasoning under Uncertainty 
 

Approximate Reasoning (Structure of the FUZZYNET Program) 
 
 

 

driver:- hypothesis-node(X), allinfer(X, Ct), 

write(“The certainty for “, X, “is”, Ct), nl, fail. 

 
 

allinfer(Node, Ct):- findall(C1, infer(Node, C1), Ctlist), supercombine(Ctlist, Ct). 
 
 

/*A simple implication */ 
 

infer(Node1, Ct):- 
 

imp(s, Use, Node1, Sign, Node2, _, _, C1), 

allinfer(Node2, C2), 

find_multiplier(Sign, Mult, dummy, 0), CS = Mult * C2, 

qualifier(Use, CS, Qmult), Ct = CS * C1 * Qmult. 

/* An implication with an AND in the Premise */ 
 

infer(Node1, Ct):- 
 

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1), 

allinfer(Node2, C2), 

allinfer(Node3, C3), 
 

find_multiplier(SignL, MultL, SignR, MultR), 

C2S = MultL * C2, C3S = MultR * C3, 

min(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult. 
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/* An implication with an OR in the Premise */ 
 

infer(Node1, Ct):- 
 

imp(o, Use, Node1, SignL, Node2, SignR, Node3, C1), 

allinfer(Node2, C2), 

allinfer(Node3, C3), 
 

find_multiplier(SignL, MultL, SignR, MultR), 

C2S = MultL * C2, C3S = MultR * C3, 

max(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult. 

infer(Node1, Ct):- 

terminal_node(Node1), evidence(Node1, Ct),!. 

infer(Node1, Ct):- 

terminal_node(Node1), 
 

write(“What is the certainty for node”, Node1), 

nl, readreal(Ct), asserta(evidence(Node1, Ct)),!. 

 
 

/* This is used for simple implication */ 
 

find_multiplier(pos, 1, dummy, 0). 
 

find_multiplier(neg, -1, dummy, 0). 
 

/* This is used for AND and OR implications */ 
 

find_multiplier(pos, 1, pos, 1). 
 

find_multiplier(pos, 1, neg, -1). 
 

find_multiplier(neg, -1, pos, 1). 
 

find_multiplier(neg, -1, neg, -1). 
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supercombine([Ct], Ct):-!. 
 

supercombine([C1, C2], Ct):- combine([C1, C2], Ct), !. 
 

supercombine([C1, C2|T], Ct):- combine([C1, C2], C3), append([C3], T, TL), 
 

supercombine(TL, Ct), !. 
 

combine([-1, 1], 0). 
 

combine([1, -1], 0). 
 

Combine([C1, C2], Ct):- C1 >= 0, C2>= 0, Ct = C1 + C2 - C1 * C2. 

Combine([C1, C2], Ct):- C1 < 0, C2< 0, Ct = C1 + C2 + C1 * C2. 

combine([C1, C2], Ct):- C1 < 0, C2 >= 0, absvalue(C1, Z1), absvalue(C2, Z2), 
 

min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3). 
 

combine([C1, C2], Ct):- C2 < 0, C1 >= 0, absvalue(C1, Z1), absvalue(C2, Z2), 
 

min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3). 
 
 

absvalue(X, Y):- X = 0, Y = 0, !. 
 

absvalue(X, Y):- X > 0, Y = X, !. 
 

absvalue(X, Y):- X < 0, Y = -X, !. 
 
 

qualifier(Use, C, Qmult):- Use = “r”, Qmult = 1, !. 

qualifier(Use, C, Qmult):- Use = “n”, C >= 0, Qmult = 1, !. 

qualifier(Use, C, Qmult):- Use = “n”, C < 0, Qmult = 0, !. 
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Systems that Explain their Actions 
 
 

 

/* For and implication, the other in the same manner */ 
 

infer(Node1, Ct):- 
 

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1), 

assserta(dbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)), 

assserta(tdbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)), 

allinfer(Node2, C2), 

allinfer(Node3, C3), 
 

find_multiplier(SignL, MultL, SignR, MultR), 

C2S = MultL * C2, C3S = MultR * C3, 

min(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult, 

assertz(infer_summary( 

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1), Ct)), 

retract(dbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)), 

retract(tdbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)). 

 
 

/* How Facility Sub Program */ 
 

Exsys_driver :- getallans, showresults,!. 
 
 

Getallans :- not(prepare_answer). 

Prepare_answer :- answer(X, Y), fail. 

answer(X, Y) :- hypothesis_node(X), allinfer(X, Y), assert(danswer(X, Y)). 
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Showresults :- not(displayall). 
 

displayall :- display_aoe_answer, fail. 

display_aoe_answer :- danswer(X, Y), clearwindow, 

write(“For this hypothesis:”), nl, 
 

write(“ “, X),nl, write(“The certainty is:”, Y),nl, nl, 

not(how_describer(X)). 

 
 

how_describer(Node) :- repeat, nl, 
 

write(“Type h(how) nodename, or c(to continue),”), 

nl, readln(Reply), nl, how_explain(Reply),!. 

 
 

how_explain(Reply) :- Reply = “c”. 
 

how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _), 
 

infer_summary(imp(_, _, X, _, _, _, _, _), _), clearwindow,!, 

write(“The rule(s) that bear upon this conclusion are: “), 

nl, nl, infer_summary(imp(A, A1, X, R, S, C, D, E),F), 

write(“Concluded: “, X), nl, gettype(A, Z), 
 

write(“from an “, Z), nl, write(“ premise 1 was: “,S), nl, 

write(“ premise 2 was: “,D), nl, 

write(“The certainty from use of this rule alone was: “,F), 

nl, nl, fail. 
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how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _), 
 

terminal_node(X), evidence(X, C), 
 

write(“You told me that: “), nl, write(“ “, X), nl, 

write(“has a certainty of: “,C), nl, fail. 

 
 

/* Why Facility Sub Program */ 
 

infer(Node, Ct) :- terminal_node(Node), evidence(Node, Ct), !. 

infer(Node, Ct) :- terminal_node(Node), repeat, nl, 

write(“Type w(why) or give the certainty for node “, Node), 

nl, readln(Reply), reply_to_input(Node, Reply, Ct), !. 

 
 

reply_to_input(Node, Reply, Ct) :- not(isname(Reply)), adjuststack, 
 

str_real(Reply, CT), asserta(evidence(Node,Ct)),!. 

reply_to_input(_, Reply, _) :- isname(Reply), Reply = “w”, nl, 

dbimp(U, V, R, S, S1, X, Y, Y1), 
 

why_describer(U, V, R, S, S1, X, Y, Y1), 
 

retract(dbimp(U, V, R, S, S1, X, Y, Y1)), 

putadjustflag, pauser, !, fail. 

 
 

why_describer(U, U1, V, R, S, X, Y, Z) :- clearwindow, nl, U <>”s”, gettype(U,UU), 

write(“I am trying to use an inference rule of the type “), 

nl, write(UU), write(“, to support the conclusion: “), nl, 

write(“   “, V), nl, write(“Premise 1 is: “,S), nl, getmode(R, RR), 
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write(“ This premise will be used “, RR), nl, write(“Premise 2 is: “,Y), 

nl, getmode(X, XX), nl, write(“ This premise will be used “, XX), nl, 

write(“The certainty of the implication is: “, Z), nl, !. 

why_describer(“s”, V1, V, R, S, X, Y, Z) :- clearwindow, nl, 
 

write(“I am trying to use an inference rule of the type “), nl, 

write(“simple implication, to support the conclusion: “), nl, 

write(“ “, V), nl, write(“premise 1 is: “, S), nl, getmode(R, RR), 

write(“  This premise will be used “, RR), nl 

write(“The certainty of the implication is: “, Z), nl, !. 
 
 

gettype(“a”, “and implication”). 

gettype(“o”, “or implication”). 

gettype(“s”, “simple implication”). 

 
 

Getmode(“pos”, “as you see it.”). 

Getmode(“neg”, “prefaced by not.”). 



 

 

Natural Language Interfaces 

Formal Method 
 
 

 

The people respect clever student. 

Clever students can own respecting by their good works. 

1- Build the Context Free Grammar for the above sentences. 
2- Write a complete prolog program that parse the above sentences 

using the Context Free Grammar in step 1 . 

 
1. 

S   Np, Vp, Np / Np, Vp, Np, Pp 

Np  det, noun / adj, noun / noun / det, adj, noun 

Vp  verb / h.verb, verb 

Pp  preposition, Np 

2. 

clauses 

run:- readln(S), str_to_list(S, L), parse(L). 

parse(L):- append(A1, A2, A3, _, L), 

np(A1), 

vp(A2), 

np(A3). 

 
parse(L):- append(A1, A2, A3, A4, L), 

np(A1), 

vp(A2), 

np(A3), 

pp(A4). 

 
np(X):- append(Y1, Y2, _, _, X), 

det(Y1), 

noun(Y2). 

np(X):- append(Y1, Y2, _, _, X), 

adj(Y1), 



 

 

noun(Y2). 

np(X):- append(Y1, Y2, Y3, _, X), 

det(Y1), 

adj(Y2), 

noun(Y3). 

np(X):- noun(X). 

 
vp(Z):- append(Y1, Y2, _, _, Z), 

h.verb(Y1), 

verb(Y2). 

vp(Z):- verb(Z). 

 
pp(M):- append(W1, W2, _, _, M), 

preposition(W1), 

np(W2). 

 
/ * set of Facts */ 

det([“the”]). det([“their”]). 

noun([“people”]). noun([“student”]). 

noun([“respecting”]). noun([“work”]). 

adj([“clever”]). adj([“good”]). 

verb([“respect”]). verb([“own”]). 

h.verb([“can”]). 

preposition([“by”]). 



 

 

Analyzing the semantic structure of a Sentence 

Introduction to Thematic Analysis (Case Grammar) 

 

 

•  Object Case (is the noun group that receives the action of the verb) 
 

• Agent Case (is the entity that applies the action to the object) 
 

•  Co Agent Case (shares in applying the action that the sentence is 

about) or (pronoun followed by a noun) 

EX: “The Realtor and his assistant inspected a house for their client .” 
 

• Beneficiary Case (concerns the entity on whose behalf the action in the 

sentence was Performed) the beneficiary noun group is “for their client” 

•  Location Case (concerns noun group that express where the action 

took place) 

• Time Case (this noun group expresses when the action took place) 
 

EX: “at 5 o’clock” 
 

•  Instrument Case (noun group that identifies something used by the 

agent to apply the action carried by the verb) 

EX: “with the sharp Knife” 
 

• Source and Destination Case (the action sentence frequently is about 

movement from one place or state to another, these beginning and 

ending places for the action are associated with source and destination 

noun groups) 

EX: “The dog chased the insurance agent out of the yard and into his car” 
 

The source case noun group is “out of the yard” 
 

The destination group is “into his car” 
 

•  Trajectory Case (there will be noun groups whose function in the 

sentence is to describe the path over which the action occurred) 

EX: “The man drove in his car through the woods to his next client” 



 

 

• Conveyance Case (if the action occurs in some kind of 

Carrier, this is a conveyance noun group) 

EX: “in his car” 

 

 

Automatic Translation 
 

 

 

An Example of the Use of Thematic Analysis (From English Language) 
 

EX: “Jane repaired the radio for Dan with the test instrument“ 

Verb: (to repair) 

Verb tense: past tense 
 

Verb Aspect: 3rd  person singular (repaired) 

Object: the radio 
 

Agent: Jane 
 

Instrument: the test instrument 
 

Beneficiary: Dan 

 

 

To Germany Language 
 

Verb: (reparieren) 
 

Verb tense: past tense 
 

Verb Aspect:   3rd person singular (hat repariert) 

Object: das radio 
 

Agent: Jana 
 

Instrument: die Probeinstrumenten 
 

Beneficiary: Dan 



 

 

<agent> <verb_first_part> fur <beneficiary> <object>  mit <instrument> 

<verb_second_part> 
 

<agent> <verb_first_part> fur <beneficiary> <object> 
 

Jana hat fur Dan das Radio 
 

mit <instrument>  <verb_second_part> mit die 

Probeinstrumenten repariert 

 

 

Parts of the Program (Thematic Analysis) 
 

 

 

sentence(S,S0) :- agent(S,S1), backparta(S1,S0). 

backparta(S,S0) :- verb(S,S1), object(S1, S0). 

sentence(S,S0) :- agent(S,S1), backpartb(S1,S0). 

backpartb(S,S0) :- verb(S,S1), backpartc(S1, S0). 

backpartc(S,S0) :- object(S, S1), instrument(S1,S0). 

sentence(S,S0) :- agent(S,S1), backpartd(S1,S0). 

backpartd(S,S0) :- verb(S,S1), backparte(S1, S0). 

backparte(S,S0) :- object(S, S1), backpartf(S1,S0). 

backpartf(S,S0) :- trajectory(S,S1), time(S1,S0). 



 

 

Natural Language Interfaces 

Informal Method (Dictionary Building) 

 

clauses 
 

/* set of facts */ 
 

Own(John, B.Sc, 1980, Scientific). 
Own(Roy, M.Sc, 1984, technique). 
Own(Tomy, B.Sc, 1982, Engineer). 
Own(Har, Ph.D, 1978, Scientific). 

 

reject(“HOW”). 
reject(“GO”). 

reject(“ALL”). 
reject(“FIND”). 
reject(“THE”). 
reject(“SOME”). 
reject(“I”). 
reject(“HAVE”). 

 

dsyn(“B.Sc”, “B. of Science”). 
dsyn(“M.Sc”, “Master of Science”). 
dsyn(“Ph.D”, “Philosophy of Doctorate”). 

 
docdriver:- repeat, nl, getquery(X), findref(X, Y), 

produceans(Y), fail. 

 
getquery(Z):- write(“please ask your question.”), 

nl, readln(Y), upper_lower(Y1, Y), 

changeform(Y1, Z). 

 
changeform(S, [H|T]):- fronttoken(S, H, S1), !, changeform(S1, T). 

changeform(_, []):-!. 

 
findref(X, Y):- memberof(Y, X), not(reject(Y)), !. 



 

 

produceans(X):- own(X, X1, Y, Z), putflag, 

write(X, “has”, X1, “since the year”, Y, “in”, Z),nl. 

produceans(X):- syn(X1, W), own(X, W, Y, Z), putflag, 

write(X, “has”, X1, “since the year”, Y, “in”, Z),nl. 

produceans(_):- not(flag), 

write(“we have no information on that.”), nl. 

produceans(_):- remflag. 

 
putflag:- not(flag), assert(flag),!. 

putflag. 

 
remflag:- flag, retract(flag),!. 

remflag. 

 
syn(Y,X):- dsyn(X, Y). 

syn(Y,X):- dsyn(Y, X). 

 
dsyn(Y,X):- concat(X, “S”, Y). 

dsyn(Y,X):- concat(X, “ES”, Y). 

dsyn(Y,X):- concat(X, “’S”, Y). 
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What heuristics would you use in solving these problems? 

1. You are looking for a parking space in a moderately crowded parking lot. 

2. You think a particular radio show you want to hear is on now, but you do 

not know where it is on the dial, and you have no other guidance such as a 

newspaper listing. 

3. You are in a large office building. You are lost, and you want to find the 

personal office, but you are embarrassed to ask where it is. 

-------------------------------------------------------------------------------------------- 
 

Think about an elevator with the following controls: buttons for three floors, 

buttons to open and close the door, a sensor to see if the door is obstructed, a 

timer to time how long to leave it open, and single call buttons on each floor. 

Write a production system that would cause the elevator to operate in the 

conventional manner if the production system were controlling the operation. 

Atypical production would be: 

If (timer_expired and  door_is_open  and  door_not_obstructed)  then  

(close_door) 

-------------------------------------------------------------------------------------------- 
 

Consider the category scheme to classify expert system. For each of the 

following, discuss if the example would be an expert system at all and, if so, 

what type: 

1. A program to forecast the local weather. 

2. A program to reason about what to do when your car will not started. 

3. A program for a help-line service where the person answering the phone 

has to give advice about poisons that someone might have taken. 

4. A program to predict what courses to give and how many sections to plan 

for in the next three semesters in a large college department. 



 

 

5. A program to determine the best route for a salesperson to take on any  

given day to visit all his clients and use the minimum amount of gasoline 

that is possible. 

6. A program to produce a 3-dimensional drawing of a house, given a textual 

description of the arrangement and dimensions of the rooms. 

-------------------------------------------------------------------------------------------- 
 

Write a small expert system program to construct optimal restaurant menus 

that follows the pattern of Student Advisor System. 

-------------------------------------------------------------------------------------------- 
 

The chemical synthesis program currently works with reactions like this: 

X + y -- z ……………..with cost (c) 

1. How would things have to be modified so that reactions like this one could 

be included in the reaction data base that the program knows about? 

r -- s ..…..with cost (c) 

This is anticipating the type of reaction where you treat a chemical in a 

certain way (heating perhaps) and it turns into something else. 

2. How would things have to be modified so that reactions like this one could 

be included?   q + r + s -- w       …….with cost (c) 

3. What modification would be necessary for the program to carry along two 

costs with each synthesis: One might be the reaction cost and the other the 

length of time the reaction took to complete. 

4. What modification would be necessary for the program to include a 

function that carries the best synthesis among many syntheses? 
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--------------------------------------------------------------------------------------------------- 

1. Try to build again the structure of the fuzzy net program (certainty 

Program) that accept any arbitrary inference tree. 

--------------------------------------------------------------------------------------------------- 
 

2. Given the following information: 

index(“book1”, “OGOFF”, [“99”]). 

index(“book1”, “EDLIN”, [“41-46”, “57”]). 

index(“book2”, “EDLIN”, [“100-102”]). 

index(“book7”, “EDLIN”, [“100”, “110”]). 

index(“book1”, “EXE”, [“14-18”]). 

index(“book1”, “ECHO”, [“35”, “146”]). 

index(“book7”, “BNF”, [“51”, “55-56”]). 

index(“book7”, “BNF”, [“30-31”]). 

index(“book8”, “BNF”, [“109”, “130-148”]). 

index(“book4”, “RERURSION”, [“56-78”]). 

index(“book7”, “RECURSION”, [“119-125”]). 

 

dsyn(“LOGOUT”, “LOGOFF”). 

dsyn(“LOGIN”, “LOGON”). 

dsyn(“BENEFIT”, “ADVANTAGE”). 

dsyn(“PROCESSING”, “MANIPULATING”). 

dsyn(“INTELLIGENT”, “SMART”). 

dsyn(“FACT”, “REAL”). 

 

reject(“HOW”). 

reject(“ANY”). 
reject(“ABOUT”).   and so on 

 

 

Write a complete prolog program to index the above information by using 

the Dictionary (informal) Natural Language Interface technique. 

--------------------------------------------------------------------------------------------------- 
 

3. Which rules (in the chemical synthesis program) is adjusted when the user 

asks how after the program implementation? Write them. 

--------------------------------------------------------------------------------------------------- 
 

4. Which rules (in the B.B.F program) is adjusted when the user asks why 

when the system asks for any feature? Write them. 
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1.1 Introduction 

Artificial neural network (ANN) models have been studied  for  many 

years with the hope of achieving "Human-like performance", Different names 

were given to these models such as: 

- Parallel distributed processing models 

- Biological computers or Electronic Brains. 

- Connectionist models 

- Neural morphic system 

After that, all these names settled on Artificial Neural Networks (ANN) 

and after it on neural networks (NN) only. 

There are two basic different between computer and neural, these are: 

1- These models are composed of many non-linear computational elements 

operating in parallel and arranged in patterns reminiscent of biological 

neural networks. 

2- Computational Elements (or node s) are connected via weights that are 

typically adapted during use to improve performance just like human 

brain. 

Computer logic Elements (1, 0) 

Neural weighted performance 
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1.2 Development of Neural Networks 

An early attempt to understand biological computations was stimulated  

by McCulloch 4 pitts in [1943], who modeled biological neurons as logical as 

logical decision elements these elements were described by a two – valued state 

variables (on, off) and organized into logical decision networks that could 

compute simple Boolean functions. 

In 1961 Rosenblatt salved simple pattern recognition problems using 

perceptrons. Minskey and paert in [1969] studied that capabilities and 

limitations of perceptrons and concluded that many interesting problems could 

never be soled by perceptron networks. 

Recent work by Hopfield examined the computational power of a model 

system of two –state neurons operating with organized symmetric connections 

and feed back connectivity. The inclusion of feed –back connectivity in these 

networks distinguished them from perceptron – line networks. Moreover,  

graded – response neurons were used to demonstrate the power * speed of these 

Networks. Recent interest in neural networks is due to the interest in building 

parallel computers and most importantly due the discovery of powerful network 

learning algorithms. 

 

1.3 Areas of Neural Networks 

The areas in which neural networks are currently being applied are: 

1-signal processing 

2- Pattern Recognition. 

3-control problems 

4- medicine 

5- speech production 

6-speech Recognition 

7-Business 
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 x2 

w1 

w2 

wn 

y 

2.1 Theory of Neural Networks (NN) 

Human brain is the most complicated computing device known to a 

human being. The capability of thinking, remembering, and problem solving of 

the brain has inspired many scientists to model its operations. Neural network is 

an attempt to model the functionality of the brain in a simplified manner. These 

models attempt to achieve "good" performance via dense interconnections of 

simple computational elements. The term (ANN) and the connection of its 

models are typically used to distinguish them from biological network of 

neurons of living organism which can be represented systematically as shown in 

figure below 

 

 

 

 

 
Artificial Neural Network 

Biological Neural Network 

 

 

Neclues is a simple processing unite which receives and combines signals 

from many other neurons through input  paths  called  dendrites  if  the 

combined  signal  is  strong  enough,  it  activates  the  firing of neuron which 
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produces an o/p signal. The path of the o/p signal is called the axon, synapse is 

the junction between the (axon) of the neuron and the dendrites of the other 

neurons. The transmission across this junction is chemical in nature and the 

amount of signal transferred depends on the synaptic strength of the junction. 

This synoptic strength is modified when the brain is learning. 

Weights (ANN)   synaptic strength (biological Networks) 

 

 

2.2 Artificial Neural Networks (ANN) 

An artificial neural network is an information processing system that has 

certain performance characters in common with biological neural networks. 

Artificial neural networks have been developed as generalizations of 

mathematical models of human cognition or neural biology, based on the 

assumptions that:- 

1-Information processing occurs at many simple elements called neurans. 

2-Signals are passed between neurons over connection links. 

3- Each connection link has an associated weight which, in a typical neural net, 

multiplies the signal transmitted. 

4- Each neuron applies an action function (usually nonlinear) to its net input 

(sum of weighted input signals) to determine its output signal. 

 

A Neural network is characterized by: 

1- Architecture: - its pattern of connections between the neurons. 

2- Training Learning Algorithm: - its method of determining the weights on 

the connections. 

3- Activation function. 
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2.2.1 Properties of ANN 

1- parallelism 

2- capacity for adaptation "learning rather programming" 

3-capacity of generalization 

4- no problem definition 

5- abstraction & solving problem with noisy data. 

6-Ease of constriction & learning. 

7-Distributed memory 

8- Fault tolerance 
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2.3 Learning in Neural Network 

In case a neural network is to be used for particle applications, a general 

procedure is to be taken, which in its various steps can be described as follows:- 

1: A logical function to be represented is given. The input vector e1 , e2, e3,  …. 

, en are present, whom the output vectors a1, a2, a3, …. , an assigned. These 

functions are to be represented by a network. 

2: A topology is to be selected for the network. 

3: The weights w1, w2, w3, … are to be selected in such away that the network 

represents The given function (n) the selected topology. Learn procedures  

are to be used for determining the weights. 

4: After the weights have been learned and the network becomes available, it 

can be used as after as desired. 

 

The learning of weights is generally done as follows: 

1- Set random numbers. For all weights. 

2-  Select a random input vector ej. 

3- Calculate the output vector Oj with the current weights. 

4- Compare Oj with the destination vector aj , if Cj = aj then continue 

with (2). 

Else correct the weights according to a suitable correction formula and 

then continue with (2). 

There are three type of learning in which the weights organize themselves 

according to the task to be learnt, these types are:- 

1. Supervised learning 

The supervised is that, at every step the system is informed about the 

exact output vector. The weights are changed according to a formula (e.g. the 

delta-rule), if o/p is unequal to a. This method can be compared to learning 

under a teacher, who knows the contents to be learned and regulates them 

accordingly in the learning procedure. 
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(A very simple neural network) 

W1 

W2 

v1  

Y 

W3 v2  

Input unit Hidden unit Output unit 

2. Unsupervised Learning 

Here the correct final vector is not specified, but instead the weights are 

changed through random numbers. With the help of an evaluation function one 

can ascertain whether the output calculated with the changed weights is better 

than the previous one. In this case the changed weights are stored, else  

forgotten. This type of learning is also called reinforcement learning. 

3. Learning through Self- Organization 

The weights changed themselves at every learning step. The change 

depends up on 

1- The neighborhood of the input pattern. 

2- The probability pattern, with which the permissible input pattern is 

offered. 

2.4 Typical Architecture of NN 

Neural nets are often classified as single layer or multilayer. In 

determining the number of layers, the input units are not counted as a layer, 

because they perform no computation. Equivalently, the number of layers in the 

net can be defined to be the number of layers of weighted interconnects links 

between the slabs of neurons. This view is motivated by the fact that the  

weights in a net contain extremely important information. The net shown bellow 

has two layers of weights: 
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2.4.1 Single-Layer Net:- 

A single-layer net has one layer of connection weight. Often, the units  

can be distinguished as input units, which receive signals from the outside 

world, and output units, from which the response of the net can be read. In the 

typical single-layer net shown in figure bellow the input units are fully 

connected to output units but are not connected to other input units and the 

output units are not connected to other output units. 

 

 
(A single-layer neural network) 

 

 

2.4.2 Multilayer net 

A Multilayer net is a net with one or more layers (or levels) of nodes 

which is called hidden units, between the input units and the output units. 

Typically, there is a layer of weights between two adjacent levels of units  

(input, hidden, or output). Multilayer nets can solve more complicated problems 

than can single-layer nets, but training may be more difficult. However, in some 

cases, training may be more successful because it is possible to solve a problem 

that a single-layer net can not be trained to perform correctly at all. The figure 

bellow shows the multilayer neural net. 

W11 

Wi1 

Wn1 

W1j 

 

Wij 

Wnj 

W1m 

Wim 

Wnm 

One layer 

of weights 

 

Input Output 
unit unit 
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(A Multilayer Neural Net) 

The figure shown bellow is an example of a three-layered neural net work 

with two hidden neurons. 

 

V11 

Vi1 

V1i Vn1
 

W11 

Wj1 

Wp1 

V1p 
W1k 

Vip 

Vij 

Vnj 

Wik 

Wpk 

Vnp 

Wjm 

Wpm 

W1m 

Input 
unit 

Hidden unit 
Output 

unit 

a1 a2 a3 

hi h2 

e1 e2 e3 
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6 

4 

2 

-8 -6   -4 -2 
-2 

-4 

-6 

2 4 6 8 

2.5 Basic Activation Functions 

The activation function (Sometimes called a transfers function) shown in 

figure below can be a linear or nonlinear function. There are many different 

types of activation functions. Selection of one type over another depends on the 

particular problem that the neuron (or neural network) is to solve. The most 

common types of activation function are:- 

n 

Vq    WqjX j 
v0 

Alternate nonlinear model of an ANN 

1- The first type is the linear (or identity) function. Ramp 

yqflin (vq )  vq 

Flin(vq) 

X1 W1 

 threshold 
 bias 

X2 
W2 vq 

F(0) 
yq 

axan 

Y output 

Wn 

Xn Summing 
Activation function 

junction  
(cell body) 

Synaptic weights 
( including   or  ) 
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+1 



2- The second type of activation function is a hard limiter; this is a binary (or 

bipolar) function that hard-limits the input to the function to either a 0 or a 1 for 

the binary type, and a -1 or 1 for the bipolar type. The binary hard limiter is 

sometimes called the threshold function, and the bipolar hard limiter is referred 

to as the symmetric hard limiter. 

a- The o/p of the binary hard limiter:- 
 

 0 if 
yq  fhl (vq )  

1 if 

vq  0 

vq  0 

fhl (vq) 

 

 
vq 

 

 

 

 

b- The o/p for the symmetric hard limiter (shl):- 
 

 1 if 

yq  fshl(vq )  
 0 if 

vq  0 

vq  0 

   1 if  vq   

0 

 

 

fshl(vq ) 

 

 

 
double side  اضيا ىمست   

 

 

 

 

vq 

 

 

 

 
3- The third type of basic activation function is the saturating linear function or 

threshold logic Unite (tLu) . 

This type of function can have either a binary or bipolar range for the saturation 

limits of the output. The bipolar saturating linear function will be referred to as 

the symmetric saturating linear function. 

+1 

-1 
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



1 

a- The o/p for the saturating linear function (binary o/p):- 
 



yq   fsl(vq )  



0 

vq  1/ 2 

if vq 

if 1/2 

 -1/2 

vq    1/2 

 if vq  1/2 

  if x  

or y  
 x if     x    

   if  
y 

Fsi(vq) 

 - 



















x 

vq 

 

 

 

 

 

 

b- The o/p for the symmetric saturating linear function:- 

 1 


if vq  -1 

yq   fssl(vq )  vq if -1    vq    1 


 1 if vq  1 

 
fshl(vq ) 

 

 

-1 

+1 

1 
vq 

-1 

1 

0.6 

0.4 

0.2 

-1 -0.75 -0.5 -0.25 

 

0.25  0.5  0.75 1 
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w 

4- The fourth type is sigmoid. Modern NN's use the sigmoid nonlinearity which 

is also known as logistic, semi linear, or squashing function. 

 

yq   fbs (vq ) 



y   
1 

1 e
x

 

 

1 

1 e
vq 

 
fbs (vq ) 

 و 0 نيب ةروصحم ةونرم اهبو1

 

 

 

 

 

 

5- Hyperbollc tangent function is similar to sigmoid in shape but symmetric 

about the origin. (tan h) 

y 

y  e
x  ex 

ex  ex 

 

 

 

 

 

 

Ex.1 find y for the following neuron if :- x1=0.5,  x2=1, x3=0.7 

w1=0, w2=-0.3, w3=0.6 x1
 

1 

x2  
w2 y 
w3 

Sol 

net = 

x3 

 X1W1  X2W2  X3W3 

=0.5*0+1*-0.3+(-0.7*0.6)= -0.72 

1- if f  is linear 

y = -0.72 

2- if f is hard limiter (on-off) 

y = -1 

3- if f  is sigmoid 

+1 

0.5 

 
0 

x 
vq 

+1 

x 

-1 
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x1 

2 
w2 

w1 

y 

x3 
w3 

1 



 

y 
  1  0.32 

1 e(0.72) 

4- if  f  is  tan h 

0.72 

y 
 e

0.72  

 0.6169 

e0.72   e0.72 

5- if f is  (TLU) with  b=0.6, a=3  then y=-3 

 
 

 a y   b 
  a y   b 

f (y)   ky 


- b  y b f(y)  
ky 

- a y  - b 
 

 

Ex2:- (H.W) 

Find  y  for the following neuron if 

x1  = 0.5,  x2 = 1, x3 = -0.7 

w1 = 0,  w2  = -0.3, w3 = 0.6 

 = 1
 x

 

Sol 


Net =  WiXi  

= -0.72 + 1 = 0.28 

1- if f  is linear 

y =  0.28 

2- if  f is hard limiter 

y = 1 

3- if f  is sigmoid 

y 
 1 

1 e0.28 

4-if  f  is  tan sh 

 0.569 

y  e
0.28  e0.28 

 0.272 

e0.28   e0.28 

e 

0  y  b 
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x1 

x2 

x3 

w1 

w2 

w3 

5-if f is TLU with  b=0.6, +a=3 

y=0.28 y  b  y   b 
 

 

 

 
 

Ex.3 

The output of a simulated neural using a sigmoid function is 0.5 find the 

value of threshold when the input x1 = 1, x2 = 1.5, x3 = 2.5. and have initial 

weights value = 0.2. 

Sol 

Output = F (net +  ) 

F(net)  
1
 

1 enet 

Net = WiXi 

 X1W1  X2W2  X3W3 

=(1*0.2)+(1.5*0.2)+(2.5*0.2) = 0.2 +0.30 +0.50  = 1 

0.5  
1
 

1 e(1) 

0.5 (1  e
(1) 

)  1 

0.5 0.5  e(1)  1 

0.5 e(1)   
 0.5 

e(1)  1 

 (1 )  ln  1   -1 -      -   1     -1 

Y = net 
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2.6 The Bias 

 ملعتلا نيسحتل فاضت ةتباث ةميق
 

Some networks employ a bias unit as part of every layer except the output layer. 

This units have a constant activation value of 1 or -1, it's weight might be 

adjusted during learning. The bias unit provides a constant term in the weighted 

sum which results in an improvement on the convergence properties of the 

network. 

A bias acts exactly as a weight on a connection from a unit whose 

activation is always 1. Increasing the bias increases the net input to the unit. If a 

bias is included, the activation function is typically taken to be: 

 
 

 

 

 
Where 

1 
f (net)

1 

if  net  0 ; 

if  net  0 ; 

 

net  b  Xi Wi 

i 

Figure: - single –layer NN for logic function 
 

 

b 

1 
 

W1 

X1 y 
 

 

X2 W2 

 

 
Input unit output unit 

 

Same authors do not use a bias weight, but instead use a fixed threshold  for 

the activation function. 
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Where 

1 
f (net)

1 

if  net  0 ; 

if  net  0 ; 

 

net  b  Xi Wi 

i 

However, this is essentially equivalent to the use of an adjustable bias. 

 

 
3.1 Learning Algorithms 

The NN's mimic the way that a child learns to identify shapes and colors 

NN algorithms are able to adapt continuously based on current results to 

improve performance. Adaptation or learning is an essential feature of NN's in 

order to handle the new "environments" that are continuously encountered. In 

contrast to NN's algorithms, traditional statistical techniques are not adoption 

but typically process all training data simultaneously before being used with  

new data. The performance of learning procedure depends on many factors such 

as:- 

1- The choice of error function. 

2- The net architecture. 

3- Types of nodes and possible restrictions on the values of the weights. 

4- An activation function. 

 

The convergent of the net:- 

Depends on the:- 

1-  Training set 

2- The initial conditions 

3-  Learning algorithms. 

Note:- 

The convergence in the case of complete information is better than in the case 

of incomplete information 
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Training a NN is to perform weights assignment in a net to minimize the 

o/p error. The net is said to be trained when convergence is achieved or in other 

words the weights stop changing. 

The learning rules are considered as various types of the:- 

 

 
3.1.1 Hebbian Learning Rule 

The earliest and simplest learning rule for a neural net is generally known 

as the Hebb rule. Hebbian learning rule suggested by Hebb in 1949. Hebb's 

basic idea is that if a unit Uj receives an input from a unit Ui and both unite are 

highly active, then the weight Wij (from unit i to unit j) should be strengthened. 

This idea is formulated as:- 

wij    xiy j 
 

Where  is the learning rate 

w(new) = w(old) + xy 

 1 , w  is the weight change 

  w(new) w(old)  w 
 

 

-: Hebbian learning محاسن - 

هـهو متـي ةولـهسال نـم active o/p والـ active وـكي  I/p ـلا مامـنع    

weight 

 ـلا ميق ليلقتب حمست

. 1  and 0 نم مامختساب and -1 1+ بمال  اهزاجنا   
 

 

-:Hebbian learning مساوئ الـ - 

Hebbian learning takes no account of the actual value of the output, only the 

desired value. This limitation can be overcome if the weights are adjusted by 

amount which depends upon the error between the desired and actual output. 

This error is called delta, S, and the new learning rule is called the delta rule. 
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Algorithm (Hebbian learning Rule) 

Step 0: Initialize all weights 

wi  = 0  (i  =1 to n ) 

Step 1: for each I/p training vector target o/p 

Pair. S : t do steps 2- 4. 

Step 2 : Set activations for I/P units: 

wi  = si   (i  =1 to n ) 
 

 

Step 3 : set activation for O/P unit : 

y = t 

Step 4 : Adjust the weights for 

wi  (new) = wi(old) + xiy (i  =1 to n ) 

Adjust the bias: 

b(new) = b(old) + y 

Note that the bias is adjusted exactly like a weight from a "unit" whose output 

signal is always 1. 

Ex 4: 

A Hebb net for the ABD function: binary input and targets 
 

Input Target 

1 

1 
0 

0 

1 

0 
1 

0 

1 

1 
1 

1 

1 

0 
0 

0 

w1  x1y, w2  x2y, b  y 

Initial weights = 0,  w1  =0 , w2  =0, w3 =0 
 

1 

2 

3 

4 

x1 x2 b y w1     w2 b w1 

0 

w2 

0 
b 
0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

0 

0 

1 1 1 

0 0 0 

0 0 0 

0 0 0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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The first input pattern shows that the response will be correct presenting 

the second, third, and fourth training i/p shows that because the target value is 0, 

no learning occurs. Thus, using binary target values prevents the net from 

learning only pattern for which the target is "off". 

The AND function can be solved if we modify its representation to 

express the inputs as well as the targets in bipolar form. Bipolar representation 

of the inputs and targets allows modifications of a weight when the input unit 

and the target value are both "on" at the same time and when they are both "off" 

at the same time and all units will learn whenever there is an error in the output. 

The Hebb net for the AND function: bipolar inputs and targets are: 

w1   x1  * y 

1 *1 1 

w1 (new)  w1 (old)  w1 

 0  1   1 

 

 
Presenting the first input:- 

 

x1 x2 b y w1     w2 b w1 

0 

w2 

0 
b 
0 

1 1 1 1 1 1 1 1 1 1 

 

 

Presenting the second input:- 
 

x1 x2 b y w1     w2 b w1 

1 

w2 

1 
b 
1 

1 -1 1 -1 -1 1 -1 0 2 0 

 

 

Presenting the third input:- 
 

x1 x2 b y w1     w2 b w1 

0 

w2 

2 
b 
0 

-1 1 1 -1 1 -1 -1 1 1 -1 

x1 x2 b y 

1 
1 

-1 

-1 

1 
-1 

1 

-1 

1 
1 

1 

1 

1 
-1 

-1 

-1 
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T 

Presenting the fourth input:- 
 

x1 x2 b y w1     w2 b w1 

1 

w2 

1 
b 
-1 

-1 -1 1 -1 1 1 -1 2 2 -2 

 

 

 
 

The first iteration will be:- 
 

Input target Weight change weights 

x1 x2 b y w1     w2 b w1 

0 

w2 

0 
b 
0 

1 1 1 1 1 1 1 1 1 1 

1 -1 1 -1 -1 1 -1 0 2 0 

-1 1 1 -1 1 -1 -1 1 1 -1 

-1 -1 1 -1 1 1 -1 2 2 -2 

 
 

Second Method 

Wij   X i Yj or W X



Y




Ex. 5 

What would the weights be if Hebbian learning is applied to the data shown in 

the following table? Assume that the weights are all zero at the start. 

 

p x1 x2 y 

1 

2 
3 

4 

0 

0 
1 

1 

0 

1 
0 

1 

1 

1 
0 

1 

 

With weights that you’ve just found, what output values are produce with a 

threshold of 1, using hyperbolic activation function. 
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 x1 x2 y w1 w w1 

0 

w2 

0 

1 0 0 1 0 0 0 0 

2 0 1 1 0 1 0 1 

3 1 0 0 0 0 0 1 

4 1 1 1 1 1 1 2 

p  0, w1    0, w1    0    

p  1,  w1   0  x1 * y  0 

w 2   0  x 2 * y  0 

p  2, w1   0  0 *1  0 

w 2   0  1*1  1 

p  3, w1   0  1* 0  0 

w 2   1  0 * 0  1 

p  4,  w1   0  1*1  1 

w 2   1  1*1  2 

 w1   1 ,  w2   2 

4 

net  X i 

i1 

 Wi 

p  1, 

 

p  2, 

p  3, 

p  4, 

net  x1 * w1  x 2  * w2 

 0 *1  0 * 2  0 

net  0 *1 1* 2  2 

net 1*1 0 * 2 1 

net 1*1 1* 2  3 

e(net)   e(net) 

output  F(net  ) 




e(net)   e(net) 

 

 

 
 

p x1 x2 net y 

1 
2 

3 

4 

0 
0 

1 

1 

0 
1 

0 

1 

0 
2 

1 
3 

0 
1 

0 

1 
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3.1.2 Basic Delta Rule (BDR) 

The idea of Hebb was modified to produce the widrow-Hoff (delta) rule 

in 1960 or least Mean Square (LMS). The BDR is formulated as:- 

wij  (d j  yi ) xi 

wij   j xi (Delta rule) 

 

w : - is the weight change 

 : - is the learning rate 

d :- desired output 

y :- actual output 

 : - error between d and y 

 

 

Note:- 

Before training the net, a decision has to be made on the setting of the learning 

rate. Theoretically, the larger   the faster training process goes. But practically, 

 may have to be set to a small value (e.g 0.1) in order to prevent the training 

process from being trapped at local minimum resulting at oscillatory behavior. 
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       

 

 

H.W 

Q1:-Briefly discuss the following: 

A-Dendrites 

B-synapses 

 

 

Q2:- A fully connected feed forward network has 10 source nodes, 2 hidden 

layers, on with 4 neurons and other with 3 neurons, and single output neuron. 

Construct an architecture graph of this network. 

 

Q3:- A neuron j receives input from four other neurons whose activity levels are 

10, -20, 4 and -2. The respective synaptic weights of neuron j are 0.8, 0.2, -1, 

and -0.9. Calculate the output of neuron j for the following two activation 

functions:- 

i) Hard-limiting function 

ii) Logistic function F(x)  1/(1 e
x 

) . 

 

Q4:- perform 2 training steps of the Delta learning rules using   1 & the 

following data specifying the initial weights W1, & the two training pairs 

0   2   0  
       

W1  1, x1   1 , d1  1, x 2  1, d2 1

0  1 1 


Q5:-list the features that distinguish the delta rule & Hebb's rule from each 

other? 
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3.1.3 Back Propagation 

The determination of the error is a recursive process which start with the 

o/p units and the error is back propagated to the I/p units. Therefore the rule is 

called error Back propagation (EBP) or simply Back Propagation (BP). The 

weight is changed exactly in the same form of the standard DR 

wij   j xi 

 wij (t 1)  wij (t)    j xi 

There are two other equations that specify the error signal. If a unite is an o/p 

unit, the error signal is given by:- 

  (d j  y j) f j(net  j)  

Where net j    wij xi  


The GDR minimize the squares of the differences between the actual and the 

desired o/p values summed over the o/p unit and all pairs of I/p and o/p vectors. 

The  rule  minimize  the overall error E  Ep 
by  implementing  a gradient 

descent in E: - where,  Ep  1/ 2 j(d j  y j)
2 

. 

The BP consists of two phases:- 

1- Forward Propagation:- 

During the forward phase, the I/p is presented and propagated towards the 
 

o/p.  

Pattern Hidden o/p  
ىلاألو ةلحرمال   

Y1 

 

Y2 

 
Yn 
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2- Backward Propagation:- 

During the backward phase, the errors are formed at the o/p and 

propagated towards the I/p 

1 

 
2 

 
n 

 
3- Compute the error in the hidden layer. 

 

If y  f (x)   
1 

1 e
x

 

f   y(1 y) 

Equation is can rewrite as:- 

j  y(1 y)(d j  yj) 

The error signal for hidden units for which there is no specified target 

(desired o/p) is determined recursively in terms of the error signals of the units 

to which it directly connects and the weights of those connections:- 

That is 

 j  f (net j)k 
kwik 

Or 

 j  y j (1 y j)k 
kwik 

 

 

B.P learning is implemented when hidden units are embedded between input 

and output units. 
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Convergence 

A quantitative measure of the learning is the :Root Mean Square (RMS) error 

which is calculated to reflect the "degree" of learning. 

Generally, an RMS bellow (0.1) indicates that the net has learned its training 

set. Note that the net does not provide a yes /no response that is "correct" or 

"incorrect" since the net get closer to the target value incrementally with each 

step. It is possible to define a cut off point when the nets o/p is said to match the 

target values. 

 

- Convergence is not always easy to achieve because sometimes the net gets 

stuck in a "Local minima" and stops learning algorithm. 

- Convergence can be represented intuitively in terms of walking about 

mountains. 

 

Momentum term 

The choice of the learning rate plays important role in the stability of the 

process. It is possible to choose a learning rate as large as possible without 

leading to oscillations. This offers the most rapid learning. One way to increase 

the learning rate without leading to oscillations is to modify the GDR to include 

momentum term. 

This can be achieved by the following rule:- 

Wij (t 1)  Wij (t)   jxi   (Wij (t)  Wij (t 1)) 

Local minima 
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Where  (0 1) is a constant which determines the effect of the past weight 

changes on the current direction of movement in weight space. 

 
A "global minima" unfortunately it is possible to encounter a local 

minima, avally that is not the lowest possible in the entire terrain. The net does 

not leave a local minima by the standard BP algorithm and special techniques 

should be used to get out of a local minima such as:- 

 

1- Change the learning rate or the momentum term. 

2- Change the no. of hidden units (10%). 

3- Add small random value to the weights. 

4- Start the learning again with different initial weights. 

 

 
3.1.3.1 Back Propagation Training Algorithm 

Training a network by back propagation involves three stages:- 

1-the feed forward of the input training pattern 

2-the back propagation of the associated error 

3-the adjustment of the weights 

let n = number of input units in input layer, 

let p = number of hidden units in hidden layer 

let m = number of output units in output layer 

let Vij  be the weights between i/p layer and the hidden layer, 

let Wij  be the weights between hidden layer and the output layer, 

we refer to the i/p units as Xi , i=1, 2, ….,n. and we refer to the hidden units as 

Zj  , j=1,….,p. and we refer to the o/p units as yk, k=1,….., m. 

1j  is the error in hidden layer, 

2k  is the error in output layer, 

  is the learning rate 
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 is the momentum coefficient (learning coefficient, 0.0 <  < 1.0, 

yk  is the o/p of the net (o/p layer), 

Zj is the o/p of the hidden layer, 

Xi  is the o/p of the i/p layer. 

 is the learning coefficient. 

 

 

The algorithm is as following :- 

Step 0 : initialize weights (set to small random value). 

Step 1 : while stopping condition is false do steps 2-9 

Step 2: for each training  pair, do steps 3-8 

Feed forward :- 

Step 3:- Each i/p unit (Xi) receives i/p signal Xi & broad casts this signal 

to all units in the layer above (the hidden layer) 

 

Step 4:- Each hidden unit (Zj) sums its weighted i/p signals, 

n 

Z  inj  Vaj xivij (Vaj   is  abias) 
i1 

and applies its activation function to compute its output signal (the 

activation function is the binary sigmoid function), 

Zjf (Z  inj)  1 / (1 exp - (Z- inj)) 

and sends this signal to all units in the layer above (the o/p layer). 

Step 5:- Each output unit (Yk)sums its weighted i/p signals, 

p 

y  ink  wok  Zjwjk 
j1 

(where  wok is  abias) 

 

and applies its activation function to compute its output signal. 

yk  f (y  ink)  1/(1 exp (y  ink) 
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back propagation of error:- 

step 6 : Each output unit (yk , k= 1 tom ) receive a target pattern 

corresponding to the input training pattern, computes its error 

information term and calculates its weights correction term used 

to update Wjk later, 

2k  yk (1 yk )*(Tk  yk ), 

where Tk  is the target pattern & k=1 to m . 

step 7 : Each hidden unit (Zj, j= 1 top ) computes its error information 

term and calculates its weight correction term used to update Vij 

later, 

m 

1j  Zj* (1 Zj) * 2kWjk 
k1 

Update weights and bias :- 

step 8: Each output unit (yk, k =1 tom ) updates its bias and weights: 

Wjk(new)  * 2k * Zj    *[Wjk(dd)], 

j= 1 to p 

Each hidden unit (Zj, j= 1 to p) update its bias and weights: 

Vij(new)   * 1j* Xi  [vij(dd)], 

I = 1 to n 

Step 9 : Test stopping condition. 
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 

EX6 

Suppose you have BP- ANN with 2-input , 2-hiddden , 1-output nodes with 

sigmoid function and the following matrices weight, trace with 1-iteration. 

 0.1  0.3 w 0.3  0.5 
V  

0.75  0.2 



Where  0.9,    0.45, x (1,0), and Tk   1 

 

Solution:- 
 
 

11 

 
 

Input 

units 

Hidden 

units 

output 

units 
 

 

1- Forword phase :- 

Z  in1  X1V11  X2V21  1* 0.1  0 * 0.75  0.1 

Z  in 2  X1V12 X2V22  1* 0.3  0 * 0.2  0.3 

Z1  f (Z  in1)  1/(1  exp (Z  in1))  0.5 

Z2  f (Z  in 2)  1/(1  exp (Z  in 2))  0.426 

y  in1  Z1W11  Z2 W21 

 0.5* 0.3  0.426*(-0.5)  -0.063 

y1  f (y  in1)  1/(1  exp (y  in1)  0.484 

X1 

0.1 V11 

Z1 

-0.3 

0.75 

V21 

V12 

0.3 W11 

0.2 V22 

12 

Z2 

Y1 

-0.5 W21 

X2 
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 

2- Backward phase :- 

2k  yk(1  yk) *(Tk  yk) 

21  0.484(1  0.484) * (1  0.484)0.129 

m 

1j  Z j * (1  Z j) * 2k Wjk 

k1 

11  Z1(1  Z1) *(21W11) 

 0.5 (1- 0.5)*(0.129* 0.3)  0.0097 

12  Z2 (1  Z2 )*(21W21) 

 0.426(1  0.426) *(0.129 *(0.5))  0.015 

 

 
3- Update weights:- 

Wjk (new)  * 2k  * Z j   *Wjk (old) 
W11   * 21 * Z1   * W11(old)

 0.45* 0.129* 0.5  0.9* 0.3  0.299 

W21   * 21 * Z2   * W21(old)
 0.45* 0.129* 0.426  0.9*-0.5  0.4253 

Vij(new)  * 1j * Xi   *  Vij (old) 
V11   * 11 * X1   * V11(old)

 0.45* 0.0097 *1  0.9* 0.1 0.0944 

V12   * 12 * X1   * V12 (old)
 0.45* 0.0158*1  0.9*-0.3 0.2771 

V21   * 11 * X2   * V21(old)
 0.45* 0.0097 * 0  0.9* 0.75  0.675 

V22   * 12 * X2   * V22 (old)
 0.45*-0.0158* 0  0.9* 0.2  0.18 

 

 

0.0944  0.2771 W 0.299 - 0.4253
V   

0.675 0.18 


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3.2 The Hopfield Network 

The Nobel prize winner (in physics ) John Hopfield has developed the 

discrete Hopfield net in (1982-1984). The net is a fully interconnected neural 

net, in the sense that each unit is connected to every other unit. The discrete 

Hopfield net has symmetric weights with no self-connections, i.e, 

Wij   Wji 

And Wii   0 

In this NN, inputs of 0 or 1 are usually used, but the weights are initially 

calculated after converting the inputs to -1 or +1 respectively. 

 

 

 

 

 
 

x1 

 

 

 
x2  

 

 

 
x3  

 

 
“The Hopfield network“ 

 

 

The outputs of the Hopfield are connected to the inputs as shown in 

Figure, Thus feedback has been introduced into the network. The present output 

pattern is no longer solely dependent on the present inputs, but is also dependent 

on the previous outputs. Therefore the network can be said to have some sort of 

memory, also the Hopfield network has only one layer of neurons. 
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The response of an individual neuron in the network is given by :- 

n 

y j  1 if  WijXi 

i1 i j 

 Tj 

 
y j   0 

 

n 

if   WijXi 

i1 i j 

 
 Tj 

 

This means that for the jth neuron, the inputs from all other neurons are 

weighted and summed. 

Note i  j , which means that the output of each neuron is connected to 

the input of every other neuron, but not to itself. The output is a hard-limiter 

which gives a 1 output if the weighted sum is greater than Tj and an output of 0 

if the weighted sum is less than Tj. it will be assumed that the output does not 

change when the weighted sum is equal to Tj. 

Thresholds  also  need  to  be  calculated.  This  could  be  included  in the 

matrix by assuming that there is an additional neuron, called neuron 0, which is 

permanently stuck at 1. All other neurons have input connections to this 

neuron’s output with weight W01, W02, W03,…etc. this provides an offset 

which is added to the weighted sum. The relation ship between the offset and 

the threshold Tj  is therefore:- Tj  -W0j 

The output [y] is just the output of neuron 0 which is permanently stuck at 1, so 
the formula becomes:-  W0   X Y  

t 

 

For example, if the patterns 

convert them to 

X1  1 1  1 1 

X2   1 1 1  1

To find the threshold:- 

X1   0011and  X2  0101 are to be stored, first 

1 1 1 11- The matrix  
1


1 1 1 



0 



Fourth Class (S.W & C.S) Machine Learning (ANN & GA) 

35 

 

 

 1 

 1  1
 1 1 




2- The transpose of the matrix is 
 1 


 1 


 1


1 

3- y0 is permanently stuck at +1 , so the offsets are calculated as follows 

 1  1  2

 1  1

 
 1 

  
0 



W0      
     

 1 


 1
  

  0 
 

 1  1  2



4- These weights could be converted to thresholds to give:- 

T1    2 

T2   0 
Tj -W0j 

T3   0 

T4 

EX7:- 

 2 

Consider the following samples are stored in a net:- 
 








binary  convert   bipolar 

The binary input is (1110). We want the net to know which of samples is the i/p 

near to? 

 

Note :- 

A binary Hopfield net can be used to determine whether an input vector is a 

“known” vector (i.e., one that was stored in the net ) or “unknown” vector. 

0 


1 0 0 1 
 

 1 1 1

1 1 0 0   1  1 1 1

0 0 1 1 1 1  1  1
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

Solution:- 1-use Hebb rule to find the weights matrix 

W11 W12 W13 W14 

W W W W 




W  W
21 22 23 24 




31 W32 


W41 W42 

W33 

W43 

W34 


W44 





Wii=0 (diagonal)  

1 

1  0 




2 

W12 

 

3 

W13 

 

4 

W14 
Wij=Wji 2  W 0 W23 W 


 21 

3 W31 W32 0 

24 W34 


4 W41 
W42 W43 0  

W12  (1*1)  (1*1)  (1* 1)  1 

W13  (1* 1)  (1* 1)  (1*1)  1 

W14   (1* 1)  (1* 1)  (1*1)  1 

W21   W12    1 

W23  (1* 1)  (1* 1)  (1*1)  3 

W24   (1* 1)  (1* 1)  (1*1)  3 

W31  W32  1 

W32   W23   3 

W34  (1* 1)  (1* 1)  (1*1)  3 

W41   W14   1 

W42   W24   3 

W43   W34   3 

 0 1  
1 0 

1 1
   




W   3 3
1  3 


0 3 


1  3 3 0 

2- The i/p vector x = (1 1 1 0). For this vector, y= (1 1 1 0) 

Choose unit y1 to update its activation 
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m 

y  in1  X1  y jw j1 

j 
 

y  in1  1  [(0 *1)  (1*1)  (1*1)  (1* 0)] 

101 

y  (1110) 

Choose unit y2 to up date its activation:- 

y  in 2  x 2   y jw j2 

j 
 

 1  [(1*1)  (1* 0)  (1* 3)  (0 * 3)] 

 1  (2)  1 

y  in 2  0 

 y  (1010) 

 y2   0 

 

Choose unit y3  to update its activation:- 

y  in 3  x3   y jw j3 

j 

 1  [(1* 1)  (1* 3)  (1* 0)  (0 * 3)] 

 1  (4)  3 

y  in 3  0 

 y  (1000) 

 y3   0 

 

Choose unit y4 to update its activation:- 

y  in4  x 4   y j w j4 

j 

 

= 0+ [(1*-1) + (1*-3) + (1*3) + (0*0)] 

= 0+ (-1) = -1 

y-in4 < 0 y4=0 

y = (1000) 

3- Test for convergence, false 

 The input vector x = (1000), for this vector, 

Y= (1 0 0 0) 
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y  in1  1 

y  in 2  1 

y  in3  1  0 

y  in 4  1  0 

 y  (1100) 

 The input vector x= (1 1 0 0) 

Y= (1 1 0 0) 

y  in1  2  1 

y  in 2  2  1 

y  in3  4  0 

y  in 4  4  0 

 y  (1100) 

The input is near to the second sample. 

True. 

Stop. 

 

 

H.W 

1- find the weights and thresholds for a Hopfield network that stores the 

patterns:- (0 0 1) and  (0 1 1). 

 

2- There are special techniques should be used to get out of local minima, 

explain it. 
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3.3 Bidirectional Associative Memory (BAM) 

A bidirectional associative memory (BAM) is very similar to a Hopfield 

network, but has two layers of neurons (kosko, 1988) and is fully connected 

from each layer to the other. There are feedback connections from the output 

layer to the input layer. 

The BAM is hetero associative, that is, it accept on input vector on one  

set of neurons and produces a related, but different, output vector on another set. 

The weights on the connections between any two given neurons from different 

layers are the same. 

The matrix of weights for the connections from the output layer to the 

input layer is simply the transpose of the matrix of weights for the connections 

between the input and output layer. 

Matrix for forward connection weights = w 

Matrix for backward connection weights = wT
 

There are 2 layers of neurons, an input layer and on output layer. There are no 

lateral connections, that is, no two neurons within the some layer are connected, 

Recurrent connections, which are feedback connections to a neuron from itself, 

may or not be present. Unlike the Hopfield net work, the diagonal of the 

connection matrix is left intact, also the number of bits in the input pattern need 

not be the same as the output pattern, so the connection matrix is not necessarily 

sequare. 

 
 

 

 
“ Layout of BAM Network “ 

Y1 Wn1 
Yi Yn 

W1j 
W1m 

Wim 

W11 Wnm 

Wi1 

x1 
W1m 

Wij 

xi xn 
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The BAM operates by presenting on input pattern,[A], and passing it through 

the connection matrix to produce an output pattern,[B] .so:- 

 
 

B[k]  f ([A(k)][w]) 

Where 

K: indicates time 
 

A(k), B(k) :- are equivalent to [x] and [y] 

F: activation function 

W:- weight matrix between layer 1 & layer 2 

The output of the neurons are produced by the function f( ) which, like the 

Hopfield, is a hard-limiter with special case at  . 

This output function is defined as follows :- 

outi 

outi 

(k 1)  1 

(k  1)  0 

if Neti (k)  0 

if  Neti (k)  0 

outi   (k 1)  outi (k)  if Neti  0 unchanged 

The output [B], is then passed back through the connection matrix to produce a 

new input pattern, [A]. 

A(k 1)  f ([B(k)][W
T 

] ) 

The [A] & [B] pattern are passed back and forth through the connection matrix 

in the way just described unitl there are no further changes to the values of [A] 

& [B] 

  - BAMمحاسن الـ

 هال 2- ةيرصالب مةظنالاو ةيظرانتلا رئامولا عم ةمجنسم1

 عاجرتسلااو معللتا يةعمل في يعسر بارتقا
 

noisy data -3لا مض ةناصح لها- 

  -ـلا وئاسم ةبتثا زالواا4

BAM 1خزلا سعة 

 لها استجابة 2-محمدة

 ةفئزا
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1 1 

3 3 3 

 
 

 

 انايحا3- عقوتم ريغ كولس كلست ً  
 

No learning -4 

 

 

EX8:- let us try to train a network to remember three binary – vector pairs. 

Ai, Bi have the same number of component, using the Hebb rule to star :- 

A1   (1 0 0) B1   (0  0 1) 

A2    (0 1 0) B2    (0 1 0) 

A3   (0 

1- Find the weight matrix? 

0 1) B3   (1  0 0) 

2- Apply an input  vector A1 = (1 0 0) to test the net to remember A1. 

Sol 
 

W   [A
T 

][B ] 
1 

 

 

W1 

 

 

W2   [A2 ][B2] 

1



    1 1 1 

W2   




W   [A
T 

][B ] 

1


1 1 1 

W3    1 1 -1 -1 1 1 1 

 1   1 1 1

W  W1   W2   W3 

1 1 1   1 1 1  1 1 1  1 1 3 

W  
 

1 1 1
 
 

1 1 1

 
 

1 1 1 

 
 

1 3 1










Test for A1 

 1  1 

 

1
 -1 -1 1 

 
1 

  

1 

1 

1 

1


1 1 1 1

T    

 

 1  -1 1 -1 1 1 1

1
     1 1 1 

 

           

1 1 1 1 1 1      1 1 1 3 1 1
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A1  * W = B1 

1 1 3 

1   1 11 3 1  3 

 3 1 1

3  3 50 0 1 B1 

 

 
 3 5

Or 

W = [AT] [B] 

 ةرصتحم قةيطر

 

 1 1 1 1 1 1  1 1 3 

W  

1 1 1

 
1 1 1

 
 

1 3 1




     

1 1 1   1 1 1 3 1 1

And then continues the same steps . 

H.W 

Q1: find the weights and thresholds for a Hopfield network that stores the 

pattern 001 and 011. 

Q2- A BAM is trained using the following input and output patterns:- 
 

Input Output 

000010010000010 01 

000010000010000 10 

000100100100000 11 

Find the weights that would be generated for the BAM network, and check that 

the input patterns generate the corresponding output patterns. 

Q3- Briefly explain the following :- 

1- Single layer network , Multi layer network 

2-ANN 

3- Areas of Neural network 

4- supervised Learning , unsupervised Learning 

5-Recurrnt, non recurrent 

6-Advantage & disadvantage of BAM 

7- write the complete alg. Of BAM. 
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1 

w 

3.4 Adaline Neural Network 
Adaline is the short from of "Adaptive linear neuron" and was presented 

in 1960 by B. Widrow and N. E. Hoff [WH1960]. The network is single  

layered, the binary values to be assumed for input and output are -1 and +1 

respectively. Figure bellow shows the general topology of the network. 

 

 
Y1 Y2 Y3 Y4 

 

w 
w w 

 

 

 

 

 

 
Where 

 

bias 

X1 X2 X3 

 

 
“Topology of Adaline “ 

 

X = input vector (including bias) 

Y=output vector = f(w*x) 

W=weight matrix 

An Adaline can be trained using the delta rule, also known as the least mean 

sequares (LMS) or widerow- Holf rule. The learning rule minimize the mean 

squared error between the activation and the target value. This allows the net to 

continue learning on all training patterns, even after the correct output value is 

generated (if a threshold function is applied ) for some patterns. 

When the Adaline is in its tracing or learning phase, there are three factors to be 

taken into account 

1- the inputs that are applied are chosen from a training set where the desired 

response of the system to these inputs is known. 

2- the actual output produced when an input pattern is applied is compared with 

the desired output and used to calculate an error 

3- the weight are adjusted to reduce the error . 
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This kind of training is called supervised learning because the output are 

known and the network is being forced into producing the correct outputs. 

Three additional points need to be included before the learning rule can be 

used:- 

4- the constant,  , has to be decided. The original suggestion for the Adaline 

was that  is made equal to:- 

  1/(n 1) 

Where n is the number of inputs. 

The effect of adjusting the weights by this amount is to reduce the error 

for the current input pattern to zero. In practice if  is sat to this value the 

weights rarely settle down to a constant value and a smaller value is generally 

used. 

5- the weight are initially set to a small random value. This is to ensure that the 

weights are all different. 

6- the offset, w0 gets adjusted in the same way as the other weights, except that 

the corresponding input x0 is assumed to be +1. 

The steps for solving any question in Adaline by using Delta-rule are :- 

1-compute the learning coefficient  :- 

  1/(n 1) 
 

n= number of inputs 

2-comput neti :- 

 

 
3- compute the error 

  d  neti 

 

 
neti  xi .wi 

i1 
 

 

 

d is the desired o/p 
 

 

4- compute the value of  xi for all weights 

5-find the total for all weight total  x i 
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6- find mean i 

Where :- 

mean  i    total /p 

 

P:- is the no. of states 

new old 

7- adjust the weights depending on meani Wi   Wi  meani 
 

 

EX9 :- 

Adaline is given the four different input and output combinations of the two 

input AND function,  y  x1   x2 , as training set 

w 0  0.12 

w1   0.4 

w 2   0.65 

 

y  x1  x2 

 

 
 

bias 

 

 
 

X2 

X1 

X0 

 

 
First the input pattern : +1 -1 -1 

Weights : -0.12 0.4 0.65 

n 

net  xi .wi 

i1 

= (+1*-0.12 )+(-1*0.4) +(-1*0.65) = -1.17 (actual output ) 

d = desired output = -1 (for first pattern) 

w2 

  w1  

  w0  D
es

ir
ed

 o
/p

 

X1 X2 Y 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

 

X0 X1 X2 Y 

+1 

+1 

+1 

+1 

-1 

-1 

+1 

+1 

-1 

+1 

-1 

+1 

-1 

-1 

+1 

-1 
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1 

0 

2 

  d  net 

= -1-(-1.17) =0.17 (error) 

  0.1 

Also we must compute :- 

wij   xi 

For convenience , these figures have been rounded to two places after the 

decimal point, so become :-  x0    (0.1* 0.17 * 1)  0.017    0.02 

 جئاتنلا ىلع لصحن اههبو t  puniلا ةيقب عم ملعلاب رمتسن -:ةظحلام   

 :-ةيلاتلا
 

        w 0 w1 w 2 

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2 

+1 

+1 
+1 

+1 

-1 

-1 
+1 

+1 

-1 

+1 
-1 

+1 

-0.12 - 

0.12 
-0.12 

-0.12 

0.40 

0.40 
0.40 

0.40 

0.65 

0.65 
0.65 

0.65 

-1.17 

0.13 
-0.37 

0.93 

-1 

-1 
+1 

-1 

0.02 

-0.11 
0.14 

-0.19 

-0.02 

0.11 
0.14 

-0.19 

-0.02 

-0.11 
-0.14 

-0.19 

total -0.14 0.04 -0.46 

meanj  total(wij)/ p p  4 

Mean0 = -0.14/4 =-0.035 = -0.04 

Mean1 = -0.04/4 =-0.01 

Mean2 = -0.46/4 =-0.115 = -0.12 

W 
new  

 W 
old 
 meanj 

ij ij 
 

W 
new 

=-0.12+(-0.04)=-0.16 
 

W 
new 

=-0.40+(0.01)= -0.41 
 

W 
new 

=-0.66+(-0.12) = 0.53  , 
 

Continue until  x  0 
 

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2 

+1 
+1 
+1 

+1 

-1 
-1 
+1 

+1 

-1 
+1 
-1 

+1 

-0.16 
-0.16 
-0.16 

-0.16 

0.41 
0.41 
0.41 

0.41 

0.53 
0.53 
0.53 

0.53 

-1.10 
0.04 
-0.25 

0.78 

-1 
-1 
+1 

-1 

0.01 
-0.10 
0.13 

-0.18 

-0.01 
0.10 
0.13 

-0.18 

-0.01 
-0.10 
-0.13 

-0.18 

      t otal -0.14 0.04 -0.44 

      mean -0.04 0.01 -0.11 
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w 0 w1 w 2 

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2 

+1 

+1 
+1 

+1 

-1 

-1 
+1 

+1 

-1 

+1 
-1 

+1 

-0.50 

-0.50 
-0.50 

-0.50 

0.50 

0.50 
0.50 

0.50 

-0.50 

-0.50 
-0.50 

-0.50 

-0.50 

-1.50 
0.50 

-0.50 

-1 

-1 
+1 

-1 

-0.05 

0.05 
0.05 

-0.05 

0.05 

-0.05 
0.05 

-0.05 

0.05 

0.05 
-0.5 

-0.5 

total 0.00 0.00 0.00 
 
 

The network has successfully found a set of weight that produces the correct 

outputs for all of the patterns. 

H.W 

Q1:A 2-input Adaline has the following set of weights w0  =0.3 , w1=-2.0 ,w2   = 

1.5 When the input pattern is x0 = 1 , x1= 1 , x2 = -1 

And the desired output is 1 

a- what is the actual output? 

b- what is the value of ? 

c- Assuming that the weights are updated after each pattern and the value  is 

1/n+1 , what are the new values for the weights? 

d- using these new values of weights, what would the output be for the same 

input pattern? 

Q2: with  set to 0.5, calculated the weights (to one decimal place) in the 

following example after are iteration through the set of training patterns. 

a- updating after all the patterns are presented 

b- updating after each pattern is presented 
 

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2 

+1 

+1 
+1 

+1 

-1 

-1 
+1 

+1 

-1 

+1 
-1 

+1 

-0.2 0.1 0.3 -0.6 +1 

+1 
-1 

+1 

0.8 -0.8 -0.8 
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3.5 Kohonen Network 

Teuvo kohonen presented the self-organizing feature map in 1982. it is an 

unsupervised, competitive learning , clustering network in which only one 

neuron (or only one neuron in a group) is “on” at a time. 

The self-organizing neural networks, also called (topology –preserving 

maps), assume a topological structure among the cluster units. This property is 

observed in the brain, but is not found in other artificial neural networks. 

There are m cluster units arranged in a one –or two – dimensional array. 

ةنيمع . ةصف  اله  ةعومجملك  تامولالمع  عيامجميوه من   :Cluster 

The weight vector for cluster units serves as an exemplar of the input patterns 

associated with that cluster. During the self organizing process, the cluster unit 

whose weight vector matches the input pattern most closely (typically, the 

square of the minimum Euclidean distance ) is chosen as the winner. The 

winning unit and its neighboring units update their weights. The weight  

vectors  of  neighboring  units  are  not,  in  general,  close  to  the input 

pattern. 

3.5.1 Architecture 

A kohonen network has two layers, an input layer to receive the input and 

an output layer. Neurons in the output layer are usually arranged into a regular 

two dimensional array. The architecture of the kohonen self-organizing map is 

shown bellow. 

 

 

(kohonen self-organizing map) 

Y1 

Wn1 
W 1j 

W11 Wi1 

Yj 

Wnj 

Wij 

W1m 

W1m 

Ym 

Wnm 

 
 
x1    xi    xn 
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* * * [  *  ( *[#] *  )  * ] * * 
R2 R1 R0 R1 R2 

Linear array 10 cluster 

Neighborhoods of the unit designated by # of radii R=2 (1& 0) in a one – 

dimensional topology (with 10 cluster units)  are shown in figure (4.2) 

 

 

* * * * * * * 

* * 

* * 

* * 

* * 

* * 

* * * * * * * 

 

Neighborhoods for rectangular grid 

R0 = …….. 

R1 = 

R2  = - - - - - 
 

 

* * * * * * * * 

The Neighborhoods of unit radii R=2 (1 & 0) are shown in figure (4.3) for a 

rectangular grid and in figure (4.4) for hexagonal grid (each with 49 units). In 

each illustration, the winning unit is indicated by the symbol “#” and the other 

units are denoted by “*” . 

* Kohonen NN can be used in speech recognizer 
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R1 

  
R 0 

    

 

 

 

* * * 

* 

* 

* 

* 

* 

R2   * * * * 

* 

* * 

* 

* * 

* 
 

* * * * * * * 

 

Neighborhoods for hexagonal grid 

R0 = …….. 

R1 = 

R2  = - - - - - 
 

 

3.5.2 Algorithm 

Step 0 : initialize weights wij 

Set topological neighborhood parameters 

Set Learning rate parameters. 

Step1:while stopping condition is false, do step 2-8 

Step2: for each input vector x, do step 3-5 

Step3: for each j, compute distance 
 

D( j)  (x i   w ij) 
i 

Euclidean distances 

Step4 : find index J such that D(J) is a minimum 

Step5: for all units j within a specified neighborhood of J, and for all i: 

Wij(new)  Wij(old)  [Xi     Wij(old)] 

2 
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

Step6: update learning rate. 

Step7: Reduce radius of topological neighborhood at specified times 

Step8: Test stopping condition. 
 

 

EX 10 

A kohonen self-organizing map (SOM) to be cluster four vectors 
 

vector1  (1 1 0 0) 

vector2  (0 0 0 1) 

vector3  (1 0 0 0) 

vector4  (0 0 1 1) 
 

The maximum no. of clusters to be formed is m=2 with learning rate  0.6 

Sol: 

With only 2 clusters available, the neighborhood of nodJ is set so that only one 

cluster up dates its weight at each step 

Initial weight matrix: 
 

0.2 0.8

0.6 0.4




 






1- for the first vector 

 

 

x1 x 2 

(1 1 

0.5 


0.9 

x3 

0 

0.7

0.3



x 4 

0) 
 

D(i)  (1 0.2)
2 
 (1 0.6)

2 
 (0  0.5)

2 
 (0  0.9)

2
 

D(2)  (1 0.8)
2 
 (1 0.4)

2 
 (0  0.7)

2 
 (0  0.3)

2
 

J  2 (The input vector) is closest to output node 2) 

 The weight on the winning unit is update:- 

W21(new)  W12 (old)  0.6(xi   W12 (old)) 

 0.8  0.6(1- 0.8)  0.92 

W22 (new)  0.4  0.6(1 - 0.4) 

 0.4 0.36 0.76 

 1.86 
 

 0.98 (Minimum) 
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



8

 

 

W23 (new)  0.7  0.6(0- 0.7) 

 0.28 

W24 (new)  0.3  0.6(0- 0.3) 

 0.12 

 

 

 

 

 

0.2 

0.6 

 

 

 

 

 

0.92
0.76




This gives the weight matrix   
0.5 


0.9 

0.28

0.12



2- for the second vector 0 0 0 1

D(i)  (0  0.2)
2 
 (0  0.6)

2 
 (0  0.5)

2 
 (1 0.9)

2  
 0.66 minimum 

 

D(2)  (0  0.92)
2 
 (0  0.76)

2 
 (0  0.28)

2 
 (1 0.12)

2
 

J  1(The i/p vector is closest to o/p node 1) 

After update the first column of the weight matrix:- 

 2.2768 

0.08 0.92

0.24 0.76




 






3- for the third vector (1 0 0 0) 

0.20 


0.96 

0.28

0.12





D(i)  (0.08)
2 
 (0  0.24)

2 
 (0  0.20)

2 
 (0  0.96)

2  
 1.856 

D(2)  (1 0.92)
2  
 (0  0.76)

2  
 (0  0.28)

2  
 (1 0.12)

2
 

 2.2768 minimum 

J  2 (The i/p vector is closest to o/p node (2)) 

After update the second column of the weight matrix:- 
 

0.08 0.968 

0.24 0.304 




 
0.20 


0.96 

4- for the fourth vector ( 0  0  1 1) 

0.112 

0.0.4 


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8

8

D(i)  (0  0.08)
2 
 (0  0.24)

2 
 (1 0.20)

2 
 (1 0.96)

2  
 0.7056 minimum 

D(2)  (0  0.968)
2 
 (0  0.304)

2 
 (1 0.112)

2 
 (1 0.048)

2
 

J  1(the i/p vector is closest to o/p node 1) 

After update the first column of the weight matrix :- 

 2.724 

 

0.032 0.968 

0.096 0.304 




 






 Reduce the learning rate 

0.680 


0.984 

0.112 

0.0.4 



 (t 1)*  (t)  0.5*(0.6)  0.3 

 After one iteration the weight matrix will be:- 
 

0.032 0.970

0.096 0.300




 
0.680 


0.984 

H.W 

0.110

0.04 



Find the output node with minimum distance then update its reference vector 

only    0.5 

 

 
 

X1=0.5 X2=0.2 

C1 C2 C3 C4 C5 

0.7 0.9 
0.8 

0.3 
0.6 

0.1 
0.5 0.4  0.3 

0.2 

X1 X2 
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3.6 Self- Organizing Networks 

Self –organizing networks mean that the systems are trained by showing 

examples of patterns that are to be classified, and the network is allowed to 

produce its own output code for the classification. 

In self – organizing networks the training can be supervised or 

unsupervised. The advantage of unsupervised learning is that the network finds 

its own energy minima and therefore tends to be more efficient in terms of the 

number of patterns that it can accurately store and recall. 

In self – organizing networks four properties are required:- 

1- The weight in the neurons should be representative of a class of  patterns. 

So each neuron represents a different class 

2- Input patterns are presented to all of the neurons, and each neuron 

produces an output. The value of the output of each neuron is used as a 

measure of the match between the input pattern and the pattern stored in 

the neuron 

3- A competitive learning strategy which selects the neuron with the largest 

response. 

4- A method of reinforcing the largest response. 
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3.7 Adaptive Resonance Theory (ART) 

Adaptive resonance theory (ART) was developed by Carpenter and 

Grossberg (1987). One form, ART 1, is designed for clustering binary vectors, 

another, ART2 also by Carpenter and Grossberg (1987). 

These nets cluster inputs by using unsupervised learning input patterns may 

be presented in any order. Each time a pattern is presented, an appropriate 

cluster unit is chosen and that cluster’s weights are adjusted to let the cluster  

unit learn the pattern. 

 

3.7.1 Basic Architecture 

Adaptive resonance theory nets are designed to allow the user to control the 

degree of similarity of patterns placed on the same cluster. ART1 is designed to 

cluster binary input vectors. The architecture of an ART1 net Consists of the 

following units:- 

1- Computational units. 

2- Supplemental units. 

 

 

1- Computational units:- 

The architecture of the computational units for ART1 consists of three 

field of unites:- 

1- The F1 units (input and interface units) 

2-  The F2 units (cluster units) 

3-  Reset unite 

This main portion of the ART1 architecture is illustrated in figure 

bellow:- 
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Y1 YJ Yr 

R 

X1 XJ Xn 

S1 Si Sn 

 

 

F2 Layer(cluster units) 
 

 

 

 

 

 

 

F1(b)Layer(Interface) 
 

 

 
 

 
 

"Basic structure of ART1" 

F1(a) Layer(input) 

 
 

The F1 layer can be considered to consist to two of two parts:- 

1-  F1 (a) the input units 

2-  F1 (b) the interface units. 

 

 

Each unit in the F1 (a) (input) layer is connected to the 

corresponding unit in the F1 (b) (interface) layer .Each unit in the F1 (a)  

&F1 (b) layer is connected to the reset unit, which in turn is connected to 

every F2 unit. Each unit in the F1 (b) is connected to each unit in the F2 

(cluster) by two weighted pathways:- 

1- Bottom –up weights:- 

The F1(b) unit Xi is connected to the F2 unit Yj by bottom –up weights bij. 

 

 

2- Top- down weights:- 

Unit Yj is connected to unit Xi by top-down weights tji. 

 

 

The F2 layer is a competitive layer in which only the uninhibited node 

with the largest net input has a non zero activation. 
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G2 

R 

F1 (a) layer (input) 

F2 layer (cluster) 

2-Supplemental Units:- 

The Supplemental Units shown in figure (4-6) are important from a 

theoretical point of view. There are two Supplemental Units called gain 

control units, these are:- 

1- Gain1 g1 or G1 

2- Gain2 G2 

In addition to the reset unit R 

+ + 

_ 
 

bij tji 

_ + + 
   F1 (b) layer (interface) G1 

 

+ + + 
 

 

 

 

 

“The Supplemental Units for ART1” 

 

Excitatory signals are indicated by (+) and inhibitory signals by (-), a 

signal is sent whenever any unit in the designated layer is (on). 

Each unit in either the F1 (b) or F2 layer of the ART1 net has three sources 

from which it can receive a signal 

1- F1(b) can receive signals from :- 

- F1(a) (an input signal) 

- F2 node (top –down signal) 

- G1 unit. 

2- F2 unit can receive a signal from :- 

- F1 (b) (an interface unit) 

- R unit (reset unit) 

- G2 unit 
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An F1(b) (interface) or F2 unit must receive two excitatory signals in 

order to be (on). Since there are three possible sources of signals, this 

requirement is called the two- thirds rule. 

The reset unit R controls the vigilance matching (the degree of similarity 

required for patterns to be assigned to the same cluster unit is controlled by a 

user – specified parameter, known as the vigilance parameter). When any unit in 

the F1 (a) is on, an excitatory signal is sent to R. the strength of that signal 

depends on how many F1(a) are (on). R also receives inhibitory signals from the 

F1(b) that are (on). If enough F1(b) are (on), unit R is prevented from firing . If 

unit R does fire, it inhibits any F2 unit that is (on). This forces the F2 layer to 

choose a new winning node. 

 

There are two types of learning that differ both in their theoretical 

assumptions and in their performance characteristics can be used for ART nets:- 

 

fast learning 

It is assumed that weight updates during resonance occur rapidly, in fast 

learning, the weight reach equilibrium on each trial. It is assumed that the 

ART1net is being operated in the fast learning mode. 

 

slow learning 

The weight changes occur slowly relative to the duration of a learning trial, 

the weights do not reach equilibrium on a particular trail. 
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H.W 

Q1: Write the complete algorithm for kohonen neural network? 

 

 

Q2: there are two basic units in ART1 architecture, list them and draw the 

figure for each one of them. 

 

Q3: there are two kinds of learning in ART neural network. Briefly explain 

each one of them. Which kind does ART1 use? 

 

Q4: Define the following expressions:- 

1-  Euclidean Distances 

2- Vigilance matching 

3- Bottom –up and top- down weights 

4-  Two-thirds rule 
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4.1 Genetic Algorithms (GA) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure of Adaptive Algorithm 

 

 

 

A genetic algorithm is a search procedure modelled on the  mechanics  of 

natural selection rather than a simulated reasoning process. Domain Knowledge 

is embedded in the abstract representation of a candidate solution termed an 

organism. Organisms are grouped into sets called populations. Successive 

population are called generation. The aim of GA is search for goal. 

A generational GA creates an initial generation G(0) , and for each 

generation ,G(t) , generates a new one ,G(t+1) . An abstract view of the 

algorithm is:- 

Adaptive algorithm 

Fuzzy system (FS) Evolutionary computation 

(EC) 

Classifier

System 

(CS) 

Genetic 

Algorithm 

(GA) 

Neural computing (NN) 

Genetic 

Programming 

(Gp) 

Evolutionary 

Programming 

(EP) 

Evolutionary 

Strategies 

(ES) (DNA) 
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Generate initial population, G(0); 

Evaluate G(0); 

t:=0; 

Repeat 

t:=t+ 1 

Generate G(t) using G(t-1); 

Evaluate G(t); 

Until solution is found. 

 

 

4.1.1 Genetic Operators 

The process of evolving a solution to a problem involves a number of 

operations that are loosely modeled on their counterparts from genetics . 

Modeled after the processes of biological genetics , pairs of vectors in the 

population are allowed to “ mate” with a probability that is proportional to their 

fitness . the mating procedure typically involves one or more genetic operators . 

The most commonly applied genetic operators are :- 

1- Crossover. 

2- Mutation. 

3- Reproduction. 

 

 

1- Crossover 

Is the process where information from two parents is combined to form 

children. It takes two chromosomes and swaps all genes residing after a 

randomly selected crossover point to produce new chromosomes. 

This operator does not add new genetic information to the population 

chromosomes but manipulates the genetic information already present in the 

mating pool (MP). 
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The hope is to obtain new more fit children It works as follows :- 

1- Select two parents from the MP ( The best two chromosomes ) . 

2- Find a position K between two genes randomly in the range (1, M-1 ) 

M = length of chromosome 

3- Swap the genes after K between the two parents. 

The output will be the both children or the more fit one. 

 
 

1- a Order crossover (OX1) 

The order crossover operator (Figure 4) was proposed by Davis (1985). The 

OX1 exploits a property of the path representation, that the order of cities (not 

their positions) are important. It constructs an offspring by choosing a sub tour 

of one parent and preserving the relative order of cities of the other parent. 

 

 

Order crossover (OX1) 

 

 

For example, consider the following two parent tours: 
 

and suppose that we select a first cut point between the second and the third 

bit and a second one between the fifth and the sixth bit. Hence, 
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The offspring are created in the following way. First, the tour segments between 

the cut point are copied into the offspring, which gives 

 

Next, starting from the second cut point of one parent, the rest of the  

cities are copied in the order in which they appear in the other parent, also 

starting from the second cut point and omitting the cities that are already  

present. When the end of the parent string is reached, we continue from its first 

position. In our example this gives the following children: 

 

 

 

 Partially mapped crossover (PMX) 

 Cycle crossover (CX) 

 Order based crossover (OX2) 

 Position based crossover (POS) 

 Heuristic crossover 

 Genetic edge recombination crossover (ER) 

 Sorted match crossover 

 Maximal preservative crossover (MPX) 

 Voting recombination crossover (VR) 

 Alternating position Crossover (AP) 
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2- Mutation 

 
 

The basic idea of it is to add new genetic information to chromosomes. It is 

important when the chromosomes are similar and the GA may be getting stuck 

in Local maxima. A way to introduce new information is by changing the allele 

of some genes. Mutation can be applied to :- 

1- Chromosomes selected from the MP. 

2- Chromosomes that have already subject to crossover. 

The Figure bellow illustrates schematically the GA approach. 

 

 

3- Reproduction 

After manipulating the genetic information already present in the MP by 

fitness function the reproduction operator add new genetic information to the 

population of the chromosomes by combining strong parents with strong 

children , the hope is to obtain new more fit children . Reproduction imitate to 

the natural selection. 

This schematic diagram of a genetic algorithm shows the functions that are 

carried out in each generation. Over a number of such generation the initial 

population is evolved to the point where it can meet some criterion with respect 

the problem at hand . 
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“Genetic Algorithm approach “ 

 

 
New 

Vector 

Population 

Old Vector 

Population 

Evaluate 
each 

Vector For

Fitness 

Select Pairs 
Of Vectors 

For Mating 

On basis of 

fitness 

Apply 
Crossover 

Mutation 

Operators 

Initialize First 

Population 

Replace Old Population With new 

Population until some criterion has 

been achieved 
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4.2 Genetic Programming (GP) 
 

Genetic programming (GP) is a domain – independent problem – solving 

approach in which computer programs are evolved to solve, or approximately 

solve problems. Thus, it addresses one of the central goals of computer science 

namely automatic programming. The goal of automatic programming is to 

create, in an automated way, a computer program that enables a computer to 

solve a problem. 

GP is based on reproduction and survival of the fittest genetic operations 

such as crossover and mutation. Genetic operation are used to create new 

offspring population of individual computer programs from the current 

population of programs . 

GP    has several properties that make it more suitable than other paradigms     

( e.g. . best – first search , heuristic search , hill climbing etc . )  ,  these 

properties are :- 

1- GP produces a solution to a problem as a computer program. Thus GP is 

automatic programming. 

2- Adaptation in GP is general hierarchical computer programs of 

dynamically varying size & shape. 

3- It is probabilistic algorithm. 

4- Another important feature of GP is role of pre processing of inputs and 

post processing of outputs . 

 

To summarize, genetic programming includes six components, many very 

similar to the requirements fo GAs: 

1- A set of structures that undergo transformation by genetic operators. 

2-  A set of initial structures suited to a problem domain. 

3- A fitness measure, again domain dependent, to evaluate structures. 

4-  A set of genetic operators to transform structures. 
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5- Parameters and state descriptions that describe members of each 

generation. 

6- A set of termination conditions. 

 

 

EX. 11:- 

By using GA step by step, find the maximum number in 0 to 31.let k=3 and 

population size=4 ,and the initial population is:- 

14 01110 

3 00011 population 

25 11001 

21 10101 

Fitness function will be:- 

25&21 

3&14 

25&21 
 

1 1  0 0 1 25 
1 0  1 0 1 21 

1 1 1 0  1 
 

29 

1 0 0 0  1  17 

14&3 

0 1  1 1 0 14 
0 0  0 1 1 3 

 
0 

 
1 

 
0 

 
1  1 

  
11 

 

0 0 1 1  0  6  

the new population will be an array and we choose position [16] randomly to do 

mutation on it:- 

 

 

Mutation 
 

Mutation 0 1 

: 

1 1 1 0 1 

1 0 0 0 1 

0 1 0 1 1 

0 0 1 1 0 

 

1 1 1 0 1 

1 0 0 0 1 

0 1 0 1 1 

1 0 1 1 0 
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After Mutation the new population will be: 

 

1 1  1  0  1 = 29 
1 1  0  0  1  =25 

1 0  1  0 1 =21 reproduction 

1  0  1  1  0 =22 
 

Because the mutation we replace 17 with 22 in the new population. 

 
EX 12 

Apply GA in travelling salesman to find the shortest path . let k=2 and the 

initial population is:- 

 

 

 

A B C  D  E  =12 

B C D  E  A  =10 

A  C  D  B  E =11 

E  C  A  D B =11 initial 

B  A  D  C E =10 population 

D  E  B  A  C =10 
 

 

B C D E A =10 

B A D C  E =10 

 

B C D A  E = 6 

B A D E  C =13 
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D E B A C  =10 

A C D  B  E 
 

D E B A  C = 10 

A C D  E  B =9 
 

E C A D  B  = 11 

A B C D  E =12 

THE NEW POPULATION IS:- 

B  C  D  A  E  = 6 

B A D  E  C  =13 
D E B A  C  = 10 

A C  D  E  B  = 9 
E C A  D  B  =11 

A  B  C  D  E =12 
 

 سفنب )قباالس ليلجا نم تامووسموكرلا لضفا و ميملجا ليلجا نم تامووسموكرلا لضفا هخأن أما

crossoverونعمل(عمد المجتمع  لمعن وا امهل طقف ميلجا ليجللcrossover 
 

H.W 
 

 

 

 

Q1: Can the bit string 0 1 0 1 0 1 0 1 be the result of crossing over the 

following pairs of parents?:- 

a- 11111111 and 00000000 

b-01010101 and 11111111 

c-10100101 and 01011010 

 

 

Q2: What is genetic algorithm (GA). Explain its algorithm. 

E C A D B  =11 

A B C D  E =12 
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Q3: What are the most commonly operators used in GA, list it only, then 

draw the figure which illustrates schematically the GA approach. 

 

Q4: Adaptive algorithm includes GA and GP in one port of it. Illustrates 

schematically the main structure of adaptive algorithm. 

Resources 

www.uotechnology.edu.iq/dep-cs 

http://www.uotechnology.edu.iq/dep-cs

