

Intelligent Applications

 التطبيقات الذكية

1

1. Introduction to Expert Systems

Expert systems are computer programs that are constructed to do

the kinds of activities that human experts can do such as design, compose,

plan, diagnose, interpret, summarize, audit, give advice. The work such a

system is concerned with is typically a task from the worlds of business

or engineering/science or government.

Expert system programs are usually set up to operate in a manner

that will be perceived as intelligent: that is, as if there were a human

expert on the other side of the video terminal.

A characteristic body of programming techniques give these

programs their power. Expert systems generally use automated reasoning

and the so-called weak methods, such as search or heuristics, to do their

work. These techniques are quite distinct from the well-articulated

algorithms and crisp mathematical procedures more traditional

programming.

Figure (1) the vectors of expert system development

New Programming

Techniques

Expert

system Method for

Dealing with Knowledge

2

As shown in Figure(1), the development of expert systems is based

on two distinct, yet complementary, vectors:

a. New programming technologies that allow us to deal with knowledge

and inference with ease.

b. New design and development methodologies that allow us to

effectively use these technologies to deal with complex problems.

The successful development of expert systems relies on a well-

balanced approach to these two vectors.

2. Expert System Using

Here is a short nonexhaustive list of some of the things expert

systems have been used for:

 To approve loan applications, evaluate insurance risks, and

evaluate investment opportunities for the financial community.

 To help chemists find the proper sequence of reactions to create

new molecules.

 To configure the hardware and software in a computer to match the

unique arrangements specified by individual customers.

 To diagnose and locate faults in a telephone network from tests and

trouble reports.

 To identify and correct malfunctions in locomotives.

3

 To help geologists interpret the data from instrumentation at the

drill tip during oil well drilling.

 To help physicians diagnose and treat related groups of diseases,

such as infections of the blood or the different kinds of cancers.

 To help navies interpret hydrophone data from arrays of

microphones on the ocean floor that are used t\u the surveillance of

ships in the vicinity.

 To figure out a chemical compound's molecular structure from

experiments with mass spectral data and nuclear magnetic

resonance.

 To examine and summarize volumes of rapidly changing data that

are generated too last for human scrutiny, such as telemetry data

from landsat satellites.

Most of these applications could have been done in more traditional

ways as well as through an expert system, but in all these cases there

were advantages to casting them in the expert system mold.

In some cases, this strategy made the program more human oriented.

In others, it allowed the program to make better judgments.

In others, using an expert system made the program easier to maintain

and upgrade.

3. Expert Systems are Kind of AI ftrograms

Expert systems occupy a narrow but very important corner of the

entire programming establishment. As part of saying what they are, we

4

need to describe their place within the surrounding framework of

established programming systems.

Figure(2) shows the three programming styles that will most

concern us. Expert systems are part of a larger unit we might call AI

(artificial intelligence) programming. Procedural programming is what

everyone learns when they first begin to use BASIC or PASCAL or

FORTRAN. Procedural programming and A.I programming are quite

different in what they try to do and how they try to do it.

Figure(2) three kinds of programming

In traditional programming (procedural programming), the

computer has to be told in great detail exactly what to do and how to do

it. This style has been very successful for problems that are well defined.

They usually are found in data processing or in engineering or scientific

work.

AI programming sometimes seems to have been defined by default,

as anything that goes beyond what is easy to do in traditional procedural

Expert
systems

programming

Artificial intelligence
programming

Procedural
programming

5

programs, but there are common elements in most AI programs. What

characterizes these kinds of programs is that they deal with complex

problems that are often poorly understood, for which there is no crisp

algorithmic solution, and that can benefit from some sort of symbolic

reasoning.

There are substantial differences in the internal mechanisms of the

computer languages used for these two sorts of problems. Procedural

programming focuses on the use of the assignment statement (" = " or ":-

") for moving data to and from fixed, prearranged, named locations in

memory. These named locations are the program variables. It also

depends on a characteristic group of control constructs that tell the

computer what to do. Control gets done by using

if-then-else goto

do-while procedure calls

repeat-until sequential execution (as default)

AI programs are usually written in languages like Lisp and Prolog.

Program variables in these languages have an ephemeral existence on the

stack of the underlying computer rather than in fixed memory locations.

Data manipulation is done through pattern matching and list building.

The list techniques are deceptively simple, but almost any data structure

can be built upon this foundation. Many examples of list building will be

seen later when we begin to use Prolog. AI programs also use a different

set of control constructs. They are :

procedure calls

sequential execution

recursion

6

4. Expert System, Development Cycle

Define problems and goals

Design and construct prototype

Test / use system

Analyze and correct shortcoming

Are design
assumptions

still correct

 No

No Ready for
final

evaluation

Yes
Final

evaluation

failed

Begin

The explanation mechanism allows the program to explain its

reasoning to the user, these explanations include justification for the

system's conclusions, explanation of why the system needs a particular

piece of data. Why questions and How questions. Figure (3) below shows

the exploratory cycle for rule based expert system.

passed

Figure(3) The exploratory cycle for expert system

7

5. Expert System Architecture and Components

The architecture of the expert system consists of several components as

shown in figure (4) below:

Figure(4)Expert system architecture

5.1. User Interface

The user interacts with the expert system through a user interface

that make access more comfortable for the human and hides much of the

system complexity. The interface styles includes questions and answers,

menu-driver, natural languages, or graphics interfaces.

5.2. Explanation ftrocessor

The explanation part allows the program to explain its reasoning to

the user. These explanations include justifications for the system's

conclusion (HOW queries), explanation of why the system needs a

particular piece of data (WHY queries).

Explanation

processor

User

Interface

Inference

engine

Knowledge

base

Working

memory

8

5.3. Knowledge Base

The heart of the expert system contains the problem solving

knowledge (which defined as an original collection of processed

information) of the particular applications, this knowledge is represented

in several ways such as if-then rules form.

5..4 Inference Engine

The inference engine applies the knowledge to the solution of

actual problems. It s the interpreter for the knowledge base. The inference

engine performs the recognize act control cycle.

The inference engine consists of the following components:-

1. Rule interpreter.

2. Scheduler

3. HOW process

4. WHY process

5. knowledge base interface.

5.5. Working Memory

It is a part of memory used for matching rules and calculation.

When the work is finished this memory will be raised.

6. Systems that Explain their Actions

An interface system that can explain its behavior on demand will seem

much more believable and intelligent to its users. In general, there are two

things a user might want to know about what the system is doing. When

the system asks for a piece of evidence, the user might want to ask,

"Why do you want it?"

9

When the system states a conclusion, the user will frequently want to ask,

"How did you arrive at that conclusion?"

This section explores simple mechanisms that accommodate both

kinds of questioning. HOW and WHY questions are different in several

rather obvious ways that affect how they can be handled in an automatic

reasoning program. There are certain natural places where these questions

are asked, and they are at opposite ends of the inference tree. It is

appropriate to let the user ask a WHY question when the system is

working with implications at the bottom of the tree; that is: when it will

be necessary to ask the user to supply data.

The system never needs to ask for additional information when it

is working in the upper parts of the tree. These nodes represent

conclusions that the system has figured out. rather than asked for. so a

WHY question is not pertinent.

To be able to make the conclusions at the top of the tree, however,

is the purpose for which all the reasoning is being done. The system is

trying to deduce information about these conclusions. It is appropriate

to ask a HOW question when the system reports the results of its

reasoning about such nodes.

There is also a difference in timing of the questions. WHY

questions will be asked early on and then at unpredictable points all

throughout the reasoning. The system asks for information when it

discovers that it needs it. The. time for the HOW questions usually comes

at the end when all the reasoning is complete and the system is reporting

its results.

domains

rxnlist = reactions*.

reactions = rxn(symbol, ls, integer, integer).

ls = symbol*.

chemicalList= chemicalForm*.

chemicalForm= chemical(symbol, rxnList, integer, integer).

Li= integer*.

predicates

rxn(symbol, ls, integer, integer).

rawmaterial(symbol, integer, integer).

chemical(symbol, rxnlist, integer, integer).

all_chemical(symbol, chemicalList).

best_chemical(symbol, chemicalForm).

one_chemical(symbol, chemicalForm).

append(rxnlist, rxnlist, rxnlist).

min(chemicalList, chemicalForm).

run(symbol).

clauses

rxn(a, [b1, c1], 12, 60).

rxn(b1, [d1, e1], 5, 45).

rxn(c1, [f1, g1], 3, 15).

rxn(a, [b2, c2], 10, 50).

rxn(b2, [d2, e2], 2, 20).

rxn(c2, [f2, g2], 6, 30).

rawmaterial(d1, 2, 0).

rawmaterial(e1, 0, 0).

rawmaterial(f1, 2, 0).

rawmaterial(g1, 0, 0).

rawmaterial(d2, 0, 0).

rawmaterial(e2, 1, 0).

rawmaterial(f2, 1, 0).

rawmaterial(g2, 0, 0).

chemical(Y, [], Cost, Time):- rawmaterial(Y, Cost, Time).

chemical(Y, L, Ct, T):-

rxn(Y, [X1, X2], C, T1), chemical(X1, L1, C1, T2), chemical(X2, L2, C2, T3),

append(L1, L2, Q), Ct = C+C1+C2,

T = T+T2+T3, append([rxn(Y, [X1, X2], C, T1)], Q, L).

best_chemical(Y, M):- all_chemical(Y, X), min(X, M).

all_ chemical(Y, X):- findall(S, one_chemical(Y, S), X).

one_chemical(Y, chemical(Y, L, Ct, T)):- chemical(Y, L, Ct, T).

append([], L, L):-!.

append([H|T], L, [H|T1]):- append(T, L, T1).

min([chemical(Y, L, Ct, T)], chemical(Y, L, Ct, T)).

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L, Ct, Time)):-

min(T, chemical(Y1, L1, C1, Time1)), Ct <= C1.

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L2, Ct2, Time2)):-

min(T, chemical(Y, L2, Ct2, Time2)), Ct2 <= Ct.

run(X):- write(“ chemical synthesis is:”), nl, chemical(X, L, Cost, Time),

write(L, “\n with total cost =”, Cost, “ Time =”, Time), nl, fail.

run(X):- write(“\n Best chemical synthesis:”), nl, best_chemical(X, Y), write(Y), nl.

Goal: run(a).

chemical synthesis:

[rxn(“a”, [“b1”, “c1”], 12, 60), rxn(“b1”, [“d1”, “e1”], 5, 45), rxn(“c1”, [“f1”, “g1”], 3, 15)]

with total cost = 24 time = 120

[rxn(“a”, [“b2”, “c2”], 10, 50), rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”, [“f2”, “g2”], 6, 30)]

with total cost = 20 time = 100

best chemical synthesis :

chemical(“a”, [rxn(“a”, [“b2”, “c2”], 10, 50) rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”, [“f2”, “g2”],

6, 30)], 20, 100)

1

Controlling the Reasoning Strategy

Classification Program with Backward Chaining (Bird, Beast, Fish) Version1

database

db_confirm(symbol, symbol)

db_denied(symbol, symbol)

clauses

guess_animal :- identify(X), write(“Your animal is a(n) ”,X),!.

identify(giraffe) :-

it_is(ungulate),

confirm(has, long_neck),

confirm(has, long_legs),

confirm(has, dark_spots)

identify(zebra) :-

it_is(ungulate),

confirm(has, black_strips),!.

identify(cheetah) :-

it_is(mammal),

it-is(carnivorous),

confirm(has, tawny_color),

confirm(has, black_spots),!.

2

identify(tiger) :-

it_is(mammal),

it-is(carnivorous),

confirm(has, tawny_color),

confirm(has, black_strips),!.

identify(eagle) :-

it_is(bird),

confirm(does, fly),

it-is(carnivorous),

confirm(has, use_as_national_symbol),!.

identify(ostrich) :-

it_is(bird),

not(confirm(does, fly)),

confirm(has, long_neck),

confirm(has, long_legs),!.

identify(penguin) :-

it_is(bird),

not(confirm(does, fly)),

confirm(does, swim),

confirm(has, black_and_white_color),!.

3

identify(blue_whale) :-

it_is(mammal),

not(it-is(carnivorous)),

confirm(does, swim),

confirm(has, huge_size),!.

identify(octopus) :-

not(it_is(mammal),

it_is(carnivorous),

confirm(does, swim),

confirm(has, tentacles),!.

identify(sardine) :-

it_is(fish),

confirm(has, small_size),

confirm(has, use_in_sandwiches),!.

identify(unknown). /* Catch-all rule if nothing else works. */

it-is(bird):-

confirm(has, feathers),

confirm(does, lay_eggs),!

it-is(fish):-

confirm(does, swim),

confirm(has, fins),!.

4

it-is(mammal):-

confirm(has, hair),!.

it-is(mammal):-

confirm(does, give_milk),!.

it-is(ungulate):-

it-is(mammal),

confirm(has, hooves),

confirm(does, chew_cud),!.

it-is(carnivorous):-

confirm(has, pointed_teeth),!.

it-is(carnivorous):-

confirm(does, eat_meat),!.

confirm(X,Y):- db_confirm(X,Y),!.

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y).

denied(X,Y):- db-denied(X,Y),!.

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y, Reply).

remember(X, Y, yes):- asserta(db_confirm(X, Y)).

remember(X, y, no):- assereta(db_denied(X, Y)), fail.

1

Controlling the Reasoning Strategy

Classification Program with Forward Chaining (Bird, Beast, Fish) Version2

database

db_confirm(symbol, symbol)

db_denied(symbol, symbol)

clauses

guess_animal :-

find_animal, have_found(X),

write(“Your animal is a(n) ”,X),nl,!.

find_animal:- test1(X), test2(X,Y), test3(X,Y,Z), test4(X,Y,Z,_),!.

Find_animal.

test1(m):- it_is(mammal),!.

test1(n).

test2(m,c):- it_is(carnivorous),!.

test2(m,n).

test2(n,w):- confirm(does, swim),!.

test2(n,n).

2

test3(m,c,s):- confirm(has, strips),

asserta(have_found(tiger)),!.

test3(m,c,n):- asserta(have_found(cheetah)),!.

test3(m,n,l):- not(confirm(does, swim)),

not(confirm(does, fly)),!.

test3(m,n,n):- asserta(have_found(blue_whale)),!.

test3(n,n,f):- confirm(does, fly),

asserta(have_found(eagle)),!.

test3(n,n,n):- asserta(have_found(ostrich)),!.

test3(n,w,t):- cofirm(has, tentacles),

asserta(have_found(octopus)),!.

test3(n,w,n).

test4(m,n,l,s):- confirm(has, strips),

asserta(have_found(zebra)),!.

test4(m,n,l,n):- asserta(have_found(giraffe)),!.

test4(n,w,n,f):- confirm(has, feathers),

asserta(have_found(penguin)),!.

test4(n,w,n,n):- asserta(have_found(sardine)),!.

it-is(bird):- confirm(has, feathers),

confirm(does, lay_eggs),!.

3

it-is(fish):- confirm(does, swim),

confirm(has, fins),!.

it-is(mammal):- confirm(has, hair),!.

it-is(mammal):- confirm(does, give_milk),!.

it-is(ungulate):- it-is(mammal),

confirm(has, hooves),

confirm(does, chew_cud),!.

it-is(carnivorous):- confirm(has, pointed_teeth),!.

it-is(carnivorous):- confirm(does, eat_meat),!.

confirm(X,Y):- db_confirm(X,Y),!.

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y).

denied(X,Y):- db-denied(X,Y),!.

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y, Reply).

remember(X, Y, yes):- asserta(db_confirm(X, Y)).

remember(X, y, no):- assereta(db_denied(X, Y)), fail.

4

Conclusions

1. Code written for backward chaining is clearer. All the rules in version 1 of

BBF have a nice declarative reading. They correspond nicely to most

people’s intuitive idea of how things should be described when they are

part of some kind of hierarchy. The description is top down.

2. Code written for backward reasoning is also much easier to modify or

expand. It is apparent without much thought what would have to be done

to add another animal (class) to the structure: just define it. But it is not

always clear where to attach another instance to a forward reasoning rule

structure. In fact, if a number of additions have to be made, all the rules

may have to be redone to accommodate the additions and at the same

time to maintain the same testing efficiency as was there before.

3. Code for the backward reasoning system will be easier to develop in the

first place because the built-in inference method in prolog is backward

chining.

Study Question

1. Show what would be required to add these two animals to both versions

of BBF:

 The camel, an ungulate with a hump.

 The unicorn, an ungulate with a single horn.

2. By examining the listings of the BBF programs, calculate the average

number of questions that will be asked to identify an animal in the forward

chaining versions and in the backward chaining version.

3. Find a set of rules that describe what to do when your computer will not

started. Organize the appropriate rules into both a backward chaining and

forward chaining systems (version 1 & 2).

1

Programs that Work under Uncertainty factor

Approximation Reasoning and Bipolar States

Logical Implications

• Simple Implication

ct(c) = ct(e) * ct(imp)

• AND Implication

ct(c) = min(ct(e1), ct(e2)) * ct(imp)

• OR Implication

ct(c) = max(ct(e1), ct(e2)) * ct(imp)

Bipolar Calculation Values

 If ct1(c) is +ve and ct2(c) is +ve (+ +) then

Ct(c) = (ct1(c) + ct2(c)) - (ct1(c) * ct2(c))

 If ct1(c) is -ve and ct2(c) is -ve (- -) then

Ct(c) = (ct1(c) + ct2(c)) + (ct1(c) * ct2(c))

 If [ct1(c) is +ve and ct2(c) is -ve (+ -)] or

[ct1(c) is -ve and ct2(c) is +ve (- +)] then

Ct(c) = (ct1(c) + ct2(c)) / (1-min(abs(ct1(c))), (abs(ct2(c)))

Reversible and non reversible Rules

Reversible

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve

 If ct(c) is +ve and prefaced by not then Ct(c) is -ve

2

Non reversible

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve

 If ct(c) is +ve and prefaced by not then Ct(c) = 1- (+ve)

Knowledge Base

• hypothesis_node(C).

• terminal_node(e).

• imp(logic op, rule type, conclusion name, left condition sign, left

condition name, right condition sign, right condition name, imp

value)

Systems that Explain their Actions

The HOW & WHY Facilities

Consider the following Inference Network (fuzzy net)

If e1 and e2 then c1 (imp= 0.8) rev

If not(e3) or c3 then c2 (imp= 0.9) rev

If e4 and e5 then c3 (imp= 0.8) rev

If c1 or c2 then c4 (imp= 0.8) rev

Answering WHY Questions

S: Type w(why) or give the certainty for node e4

U: w

S: Attempting to establish c3 via the implication

e4 and e5  c3

3

Type w(why) or give the certainty for node e4

U: w

S: Attempting to establish c2 via the implication

not e3 or c3  c2

Type w(why) or give the certainty for node e4

U: w

S: Attempting to establish c4 via the implication

c1 or c2  c4

Type w(why) or give the certainty for node e4

U: 0.85

(Why Stack Description)

Why stack description is explained through the lecture.

Answering HOW Question

S: Type h(how) nodename, or c (to continue).

U: h c4

S: Concluded c4 with certainty of 0.68 from

c1 or c2  c4

The rule is reversible

Certainty of c1 is 0.6

Certainty of c2 is 0.85

The certainty of the implication is 0.8

Used alone the rule suggests a certainty of 0.68

Type h(how) nodename, or c (to continue).

4

U: h c1

S: Concluded c1 with certainty of 0.6 from

e1 or e2  c1

The rule is reversible

Certainty of e1 is 0.75

Certainty of e2 is 0.65

The certainty of the implication is 0.8

Used alone the rule suggests a certainty of 0.6

Type h(how) nodename, or c (to continue).

Consider the following Production rules:

if not(e3) or e4 then c1 (imp = 1.0) nrev

if not(e1) and not(e2) then c2 (imp = 0.8) rev

if c1 or e5 then c3 (imp = 0.7) nrev

if not(e6) then c4 (imp = 0.9) nrev

if e7 and e8 then c5 (imp = 0.8) nrev

if not(e9) then c5 (imp = 0.9) rev

if c2 then c6 (imp = 0.9) rev

if c3 then c6 (imp = 0.9) nrev

if c4 and c5 then c6 (imp = 0.85) nrev

e1= 0.2 e2= -0.2 e3= -0.2 e4= 0.7 e5= -0.5 e6= -0.8 e7= 0.8

e8= 0.8 e9= -0.7

1

Systems That Depend on Reasoning under Uncertainty

Approximate Reasoning (Structure of the FUZZYNET Program)

driver:- hypothesis-node(X), allinfer(X, Ct),

write(“The certainty for “, X, “is”, Ct), nl, fail.

allinfer(Node, Ct):- findall(C1, infer(Node, C1), Ctlist), supercombine(Ctlist, Ct).

/*A simple implication */

infer(Node1, Ct):-

imp(s, Use, Node1, Sign, Node2, _, _, C1),

allinfer(Node2, C2),

find_multiplier(Sign, Mult, dummy, 0), CS = Mult * C2,

qualifier(Use, CS, Qmult), Ct = CS * C1 * Qmult.

/* An implication with an AND in the Premise */

infer(Node1, Ct):-

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1),

allinfer(Node2, C2),

allinfer(Node3, C3),

find_multiplier(SignL, MultL, SignR, MultR),

C2S = MultL * C2, C3S = MultR * C3,

min(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult.

2

/* An implication with an OR in the Premise */

infer(Node1, Ct):-

imp(o, Use, Node1, SignL, Node2, SignR, Node3, C1),

allinfer(Node2, C2),

allinfer(Node3, C3),

find_multiplier(SignL, MultL, SignR, MultR),

C2S = MultL * C2, C3S = MultR * C3,

max(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult.

infer(Node1, Ct):-

terminal_node(Node1), evidence(Node1, Ct),!.

infer(Node1, Ct):-

terminal_node(Node1),

write(“What is the certainty for node”, Node1),

nl, readreal(Ct), asserta(evidence(Node1, Ct)),!.

/* This is used for simple implication */

find_multiplier(pos, 1, dummy, 0).

find_multiplier(neg, -1, dummy, 0).

/* This is used for AND and OR implications */

find_multiplier(pos, 1, pos, 1).

find_multiplier(pos, 1, neg, -1).

find_multiplier(neg, -1, pos, 1).

find_multiplier(neg, -1, neg, -1).

3

supercombine([Ct], Ct):-!.

supercombine([C1, C2], Ct):- combine([C1, C2], Ct), !.

supercombine([C1, C2|T], Ct):- combine([C1, C2], C3), append([C3], T, TL),

supercombine(TL, Ct), !.

combine([-1, 1], 0).

combine([1, -1], 0).

Combine([C1, C2], Ct):- C1 >= 0, C2>= 0, Ct = C1 + C2 - C1 * C2.

Combine([C1, C2], Ct):- C1 < 0, C2< 0, Ct = C1 + C2 + C1 * C2.

combine([C1, C2], Ct):- C1 < 0, C2 >= 0, absvalue(C1, Z1), absvalue(C2, Z2),

min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3).

combine([C1, C2], Ct):- C2 < 0, C1 >= 0, absvalue(C1, Z1), absvalue(C2, Z2),

min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3).

absvalue(X, Y):- X = 0, Y = 0, !.

absvalue(X, Y):- X > 0, Y = X, !.

absvalue(X, Y):- X < 0, Y = -X, !.

qualifier(Use, C, Qmult):- Use = “r”, Qmult = 1, !.

qualifier(Use, C, Qmult):- Use = “n”, C >= 0, Qmult = 1, !.

qualifier(Use, C, Qmult):- Use = “n”, C < 0, Qmult = 0, !.

4

Systems that Explain their Actions

/* For and implication, the other in the same manner */

infer(Node1, Ct):-

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1),

assserta(dbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)),

assserta(tdbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)),

allinfer(Node2, C2),

allinfer(Node3, C3),

find_multiplier(SignL, MultL, SignR, MultR),

C2S = MultL * C2, C3S = MultR * C3,

min(C2S, C3S, CX), qualifier(Use, CX, Qmult), Ct = CX * C1 * Qmult,

assertz(infer_summary(

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1), Ct)),

retract(dbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)),

retract(tdbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)).

/* How Facility Sub Program */

Exsys_driver :- getallans, showresults,!.

Getallans :- not(prepare_answer).

Prepare_answer :- answer(X, Y), fail.

answer(X, Y) :- hypothesis_node(X), allinfer(X, Y), assert(danswer(X, Y)).

5

Showresults :- not(displayall).

displayall :- display_aoe_answer, fail.

display_aoe_answer :- danswer(X, Y), clearwindow,

write(“For this hypothesis:”), nl,

write(“ “, X),nl, write(“The certainty is:”, Y),nl, nl,

not(how_describer(X)).

how_describer(Node) :- repeat, nl,

write(“Type h(how) nodename, or c(to continue),”),

nl, readln(Reply), nl, how_explain(Reply),!.

how_explain(Reply) :- Reply = “c”.

how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _),

infer_summary(imp(_, _, X, _, _, _, _, _), _), clearwindow,!,

write(“The rule(s) that bear upon this conclusion are: “),

nl, nl, infer_summary(imp(A, A1, X, R, S, C, D, E),F),

write(“Concluded: “, X), nl, gettype(A, Z),

write(“from an “, Z), nl, write(“ premise 1 was: “,S), nl,

write(“ premise 2 was: “,D), nl,

write(“The certainty from use of this rule alone was: “,F),

nl, nl, fail.

6

how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _),

terminal_node(X), evidence(X, C),

write(“You told me that: “), nl, write(“ “, X), nl,

write(“has a certainty of: “,C), nl, fail.

/* Why Facility Sub Program */

infer(Node, Ct) :- terminal_node(Node), evidence(Node, Ct), !.

infer(Node, Ct) :- terminal_node(Node), repeat, nl,

write(“Type w(why) or give the certainty for node “, Node),

nl, readln(Reply), reply_to_input(Node, Reply, Ct), !.

reply_to_input(Node, Reply, Ct) :- not(isname(Reply)), adjuststack,

str_real(Reply, CT), asserta(evidence(Node,Ct)),!.

reply_to_input(_, Reply, _) :- isname(Reply), Reply = “w”, nl,

dbimp(U, V, R, S, S1, X, Y, Y1),

why_describer(U, V, R, S, S1, X, Y, Y1),

retract(dbimp(U, V, R, S, S1, X, Y, Y1)),

putadjustflag, pauser, !, fail.

why_describer(U, U1, V, R, S, X, Y, Z) :- clearwindow, nl, U <>”s”, gettype(U,UU),

write(“I am trying to use an inference rule of the type “),

nl, write(UU), write(“, to support the conclusion: “), nl,

write(“ “, V), nl, write(“Premise 1 is: “,S), nl, getmode(R, RR),

7

write(“ This premise will be used “, RR), nl, write(“Premise 2 is: “,Y),

nl, getmode(X, XX), nl, write(“ This premise will be used “, XX), nl,

write(“The certainty of the implication is: “, Z), nl, !.

why_describer(“s”, V1, V, R, S, X, Y, Z) :- clearwindow, nl,

write(“I am trying to use an inference rule of the type “), nl,

write(“simple implication, to support the conclusion: “), nl,

write(“ “, V), nl, write(“premise 1 is: “, S), nl, getmode(R, RR),

write(“ This premise will be used “, RR), nl

write(“The certainty of the implication is: “, Z), nl, !.

gettype(“a”, “and implication”).

gettype(“o”, “or implication”).

gettype(“s”, “simple implication”).

Getmode(“pos”, “as you see it.”).

Getmode(“neg”, “prefaced by not.”).

Natural Language Interfaces

Formal Method

The people respect clever student.

Clever students can own respecting by their good works.

1- Build the Context Free Grammar for the above sentences.
2- Write a complete prolog program that parse the above sentences

using the Context Free Grammar in step 1 .

1.

S  Np, Vp, Np / Np, Vp, Np, Pp

Np  det, noun / adj, noun / noun / det, adj, noun

Vp  verb / h.verb, verb

Pp  preposition, Np

2.

clauses

run:- readln(S), str_to_list(S, L), parse(L).

parse(L):- append(A1, A2, A3, _, L),

np(A1),

vp(A2),

np(A3).

parse(L):- append(A1, A2, A3, A4, L),

np(A1),

vp(A2),

np(A3),

pp(A4).

np(X):- append(Y1, Y2, _, _, X),

det(Y1),

noun(Y2).

np(X):- append(Y1, Y2, _, _, X),

adj(Y1),

noun(Y2).

np(X):- append(Y1, Y2, Y3, _, X),

det(Y1),

adj(Y2),

noun(Y3).

np(X):- noun(X).

vp(Z):- append(Y1, Y2, _, _, Z),

h.verb(Y1),

verb(Y2).

vp(Z):- verb(Z).

pp(M):- append(W1, W2, _, _, M),

preposition(W1),

np(W2).

/ * set of Facts */

det([“the”]). det([“their”]).

noun([“people”]). noun([“student”]).

noun([“respecting”]). noun([“work”]).

adj([“clever”]). adj([“good”]).

verb([“respect”]). verb([“own”]).

h.verb([“can”]).

preposition([“by”]).

Analyzing the semantic structure of a Sentence

Introduction to Thematic Analysis (Case Grammar)

• Object Case (is the noun group that receives the action of the verb)

• Agent Case (is the entity that applies the action to the object)

• Co Agent Case (shares in applying the action that the sentence is

about) or (pronoun followed by a noun)

EX: “The Realtor and his assistant inspected a house for their client .”

• Beneficiary Case (concerns the entity on whose behalf the action in the

sentence was Performed) the beneficiary noun group is “for their client”

• Location Case (concerns noun group that express where the action

took place)

• Time Case (this noun group expresses when the action took place)

EX: “at 5 o’clock”

• Instrument Case (noun group that identifies something used by the

agent to apply the action carried by the verb)

EX: “with the sharp Knife”

• Source and Destination Case (the action sentence frequently is about

movement from one place or state to another, these beginning and

ending places for the action are associated with source and destination

noun groups)

EX: “The dog chased the insurance agent out of the yard and into his car”

The source case noun group is “out of the yard”

The destination group is “into his car”

• Trajectory Case (there will be noun groups whose function in the

sentence is to describe the path over which the action occurred)

EX: “The man drove in his car through the woods to his next client”

• Conveyance Case (if the action occurs in some kind of

Carrier, this is a conveyance noun group)

EX: “in his car”

Automatic Translation

An Example of the Use of Thematic Analysis (From English Language)

EX: “Jane repaired the radio for Dan with the test instrument“

Verb: (to repair)

Verb tense: past tense

Verb Aspect: 3rd person singular (repaired)

Object: the radio

Agent: Jane

Instrument: the test instrument

Beneficiary: Dan

To Germany Language

Verb: (reparieren)

Verb tense: past tense

Verb Aspect: 3rd person singular (hat repariert)

Object: das radio

Agent: Jana

Instrument: die Probeinstrumenten

Beneficiary: Dan

<agent> <verb_first_part> fur <beneficiary> <object> mit <instrument>

<verb_second_part>

<agent> <verb_first_part> fur <beneficiary> <object>

Jana hat fur Dan das Radio

mit <instrument> <verb_second_part> mit die

Probeinstrumenten repariert

Parts of the Program (Thematic Analysis)

sentence(S,S0) :- agent(S,S1), backparta(S1,S0).

backparta(S,S0) :- verb(S,S1), object(S1, S0).

sentence(S,S0) :- agent(S,S1), backpartb(S1,S0).

backpartb(S,S0) :- verb(S,S1), backpartc(S1, S0).

backpartc(S,S0) :- object(S, S1), instrument(S1,S0).

sentence(S,S0) :- agent(S,S1), backpartd(S1,S0).

backpartd(S,S0) :- verb(S,S1), backparte(S1, S0).

backparte(S,S0) :- object(S, S1), backpartf(S1,S0).

backpartf(S,S0) :- trajectory(S,S1), time(S1,S0).

Natural Language Interfaces

Informal Method (Dictionary Building)

clauses

/* set of facts */

Own(John, B.Sc, 1980, Scientific).
Own(Roy, M.Sc, 1984, technique).
Own(Tomy, B.Sc, 1982, Engineer).
Own(Har, Ph.D, 1978, Scientific).

reject(“HOW”).
reject(“GO”).

reject(“ALL”).
reject(“FIND”).
reject(“THE”).
reject(“SOME”).
reject(“I”).
reject(“HAVE”).

dsyn(“B.Sc”, “B. of Science”).
dsyn(“M.Sc”, “Master of Science”).
dsyn(“Ph.D”, “Philosophy of Doctorate”).

docdriver:- repeat, nl, getquery(X), findref(X, Y),

produceans(Y), fail.

getquery(Z):- write(“please ask your question.”),

nl, readln(Y), upper_lower(Y1, Y),

changeform(Y1, Z).

changeform(S, [H|T]):- fronttoken(S, H, S1), !, changeform(S1, T).

changeform(_, []):-!.

findref(X, Y):- memberof(Y, X), not(reject(Y)), !.

produceans(X):- own(X, X1, Y, Z), putflag,

write(X, “has”, X1, “since the year”, Y, “in”, Z),nl.

produceans(X):- syn(X1, W), own(X, W, Y, Z), putflag,

write(X, “has”, X1, “since the year”, Y, “in”, Z),nl.

produceans(_):- not(flag),

write(“we have no information on that.”), nl.

produceans(_):- remflag.

putflag:- not(flag), assert(flag),!.

putflag.

remflag:- flag, retract(flag),!.

remflag.

syn(Y,X):- dsyn(X, Y).

syn(Y,X):- dsyn(Y, X).

dsyn(Y,X):- concat(X, “S”, Y).

dsyn(Y,X):- concat(X, “ES”, Y).

dsyn(Y,X):- concat(X, “’S”, Y).

Computer Sciences Department

(Software & Computer Security Branches)

AI Applications & Systems - Fourth Class

What heuristics would you use in solving these problems?

1. You are looking for a parking space in a moderately crowded parking lot.

2. You think a particular radio show you want to hear is on now, but you do

not know where it is on the dial, and you have no other guidance such as a

newspaper listing.

3. You are in a large office building. You are lost, and you want to find the

personal office, but you are embarrassed to ask where it is.

--

Think about an elevator with the following controls: buttons for three floors,

buttons to open and close the door, a sensor to see if the door is obstructed, a

timer to time how long to leave it open, and single call buttons on each floor.

Write a production system that would cause the elevator to operate in the

conventional manner if the production system were controlling the operation.

Atypical production would be:

If (timer_expired and door_is_open and door_not_obstructed) then

(close_door)

--

Consider the category scheme to classify expert system. For each of the

following, discuss if the example would be an expert system at all and, if so,

what type:

1. A program to forecast the local weather.

2. A program to reason about what to do when your car will not started.

3. A program for a help-line service where the person answering the phone

has to give advice about poisons that someone might have taken.

4. A program to predict what courses to give and how many sections to plan

for in the next three semesters in a large college department.

5. A program to determine the best route for a salesperson to take on any

given day to visit all his clients and use the minimum amount of gasoline

that is possible.

6. A program to produce a 3-dimensional drawing of a house, given a textual

description of the arrangement and dimensions of the rooms.

--

Write a small expert system program to construct optimal restaurant menus

that follows the pattern of Student Advisor System.

--

The chemical synthesis program currently works with reactions like this:

X + y -- z ……………..with cost (c)

1. How would things have to be modified so that reactions like this one could

be included in the reaction data base that the program knows about?

r -- s ..…..with cost (c)

This is anticipating the type of reaction where you treat a chemical in a

certain way (heating perhaps) and it turns into something else.

2. How would things have to be modified so that reactions like this one could

be included? q + r + s -- w …….with cost (c)

3. What modification would be necessary for the program to carry along two

costs with each synthesis: One might be the reaction cost and the other the

length of time the reaction took to complete.

4. What modification would be necessary for the program to include a

function that carries the best synthesis among many syntheses?

Computer Sciences Department

(Software & Computer Security Branches)

AI Applications & Systems - Fourth Class

1. Try to build again the structure of the fuzzy net program (certainty

Program) that accept any arbitrary inference tree.

2. Given the following information:

index(“book1”, “OGOFF”, [“99”]).

index(“book1”, “EDLIN”, [“41-46”, “57”]).

index(“book2”, “EDLIN”, [“100-102”]).

index(“book7”, “EDLIN”, [“100”, “110”]).

index(“book1”, “EXE”, [“14-18”]).

index(“book1”, “ECHO”, [“35”, “146”]).

index(“book7”, “BNF”, [“51”, “55-56”]).

index(“book7”, “BNF”, [“30-31”]).

index(“book8”, “BNF”, [“109”, “130-148”]).

index(“book4”, “RERURSION”, [“56-78”]).

index(“book7”, “RECURSION”, [“119-125”]).

dsyn(“LOGOUT”, “LOGOFF”).

dsyn(“LOGIN”, “LOGON”).

dsyn(“BENEFIT”, “ADVANTAGE”).

dsyn(“PROCESSING”, “MANIPULATING”).

dsyn(“INTELLIGENT”, “SMART”).

dsyn(“FACT”, “REAL”).

reject(“HOW”).

reject(“ANY”).
reject(“ABOUT”). and so on

Write a complete prolog program to index the above information by using

the Dictionary (informal) Natural Language Interface technique.

3. Which rules (in the chemical synthesis program) is adjusted when the user

asks how after the program implementation? Write them.

4. Which rules (in the B.B.F program) is adjusted when the user asks why

when the system asks for any feature? Write them.

University of Technology

Department of Computer Science

Fourth Class (Software & Computer Security Branches)

Lecturer: Dr. Hasanen S. Abdullah

Intelligent Systems & Applications

References

1- Fundamentals of Neural Networks: Architecture, Algorithms and Application. By

Laurence Fausett.

2- Genetic Algorithms (Search, Optimization and Machine Learning). By David E.

Goldberg.

3- Neural Networks. Fundamentals, Application and Examples. By Werner Kinnebrock.

4- Neural Network for Identification, Prediction and Control. By D. T. Pham and X. Liu.

1.1 Introduction

Artificial neural network (ANN) models have been studied for many

years with the hope of achieving "Human-like performance", Different names

were given to these models such as:

- Parallel distributed processing models

- Biological computers or Electronic Brains.

- Connectionist models

- Neural morphic system

After that, all these names settled on Artificial Neural Networks (ANN)

and after it on neural networks (NN) only.

There are two basic different between computer and neural, these are:

1- These models are composed of many non-linear computational elements

operating in parallel and arranged in patterns reminiscent of biological

neural networks.

2- Computational Elements (or node s) are connected via weights that are

typically adapted during use to improve performance just like human

brain.

Computer logic Elements (1, 0)

Neural weighted performance

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

2

1.2 Development of Neural Networks

An early attempt to understand biological computations was stimulated

by McCulloch 4 pitts in [1943], who modeled biological neurons as logical as

logical decision elements these elements were described by a two – valued state

variables (on, off) and organized into logical decision networks that could

compute simple Boolean functions.

In 1961 Rosenblatt salved simple pattern recognition problems using

perceptrons. Minskey and paert in [1969] studied that capabilities and

limitations of perceptrons and concluded that many interesting problems could

never be soled by perceptron networks.

Recent work by Hopfield examined the computational power of a model

system of two –state neurons operating with organized symmetric connections

and feed back connectivity. The inclusion of feed –back connectivity in these

networks distinguished them from perceptron – line networks. Moreover,

graded – response neurons were used to demonstrate the power * speed of these

Networks. Recent interest in neural networks is due to the interest in building

parallel computers and most importantly due the discovery of powerful network

learning algorithms.

1.3 Areas of Neural Networks

The areas in which neural networks are currently being applied are:

1-signal processing

2- Pattern Recognition.

3-control problems

4- medicine

5- speech production

6-speech Recognition

7-Business

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3

 x2

w1

w2

wn

y

2.1 Theory of Neural Networks (NN)

Human brain is the most complicated computing device known to a

human being. The capability of thinking, remembering, and problem solving of

the brain has inspired many scientists to model its operations. Neural network is

an attempt to model the functionality of the brain in a simplified manner. These

models attempt to achieve "good" performance via dense interconnections of

simple computational elements. The term (ANN) and the connection of its

models are typically used to distinguish them from biological network of

neurons of living organism which can be represented systematically as shown in

figure below

Artificial Neural Network

Biological Neural Network

Neclues is a simple processing unite which receives and combines signals

from many other neurons through input paths called dendrites if the

combined signal is strong enough, it activates the firing of neuron which

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

4

produces an o/p signal. The path of the o/p signal is called the axon, synapse is

the junction between the (axon) of the neuron and the dendrites of the other

neurons. The transmission across this junction is chemical in nature and the

amount of signal transferred depends on the synaptic strength of the junction.

This synoptic strength is modified when the brain is learning.

Weights (ANN)  synaptic strength (biological Networks)

2.2 Artificial Neural Networks (ANN)

An artificial neural network is an information processing system that has

certain performance characters in common with biological neural networks.

Artificial neural networks have been developed as generalizations of

mathematical models of human cognition or neural biology, based on the

assumptions that:-

1-Information processing occurs at many simple elements called neurans.

2-Signals are passed between neurons over connection links.

3- Each connection link has an associated weight which, in a typical neural net,

multiplies the signal transmitted.

4- Each neuron applies an action function (usually nonlinear) to its net input

(sum of weighted input signals) to determine its output signal.

A Neural network is characterized by:

1- Architecture: - its pattern of connections between the neurons.

2- Training Learning Algorithm: - its method of determining the weights on

the connections.

3- Activation function.

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

5

2.2.1 Properties of ANN

1- parallelism

2- capacity for adaptation "learning rather programming"

3-capacity of generalization

4- no problem definition

5- abstraction & solving problem with noisy data.

6-Ease of constriction & learning.

7-Distributed memory

8- Fault tolerance

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

6

2.3 Learning in Neural Network

In case a neural network is to be used for particle applications, a general

procedure is to be taken, which in its various steps can be described as follows:-

1: A logical function to be represented is given. The input vector e1 , e2, e3, ….

, en are present, whom the output vectors a1, a2, a3, …. , an assigned. These

functions are to be represented by a network.

2: A topology is to be selected for the network.

3: The weights w1, w2, w3, … are to be selected in such away that the network

represents The given function (n) the selected topology. Learn procedures

are to be used for determining the weights.

4: After the weights have been learned and the network becomes available, it

can be used as after as desired.

The learning of weights is generally done as follows:

1- Set random numbers. For all weights.

2- Select a random input vector ej.

3- Calculate the output vector Oj with the current weights.

4- Compare Oj with the destination vector aj , if Cj = aj then continue

with (2).

Else correct the weights according to a suitable correction formula and

then continue with (2).

There are three type of learning in which the weights organize themselves

according to the task to be learnt, these types are:-

1. Supervised learning

The supervised is that, at every step the system is informed about the

exact output vector. The weights are changed according to a formula (e.g. the

delta-rule), if o/p is unequal to a. This method can be compared to learning

under a teacher, who knows the contents to be learned and regulates them

accordingly in the learning procedure.

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

7

(A very simple neural network)

W1

W2

v1

Y

W3 v2

Input unit Hidden unit Output unit

2. Unsupervised Learning

Here the correct final vector is not specified, but instead the weights are

changed through random numbers. With the help of an evaluation function one

can ascertain whether the output calculated with the changed weights is better

than the previous one. In this case the changed weights are stored, else

forgotten. This type of learning is also called reinforcement learning.

3. Learning through Self- Organization

The weights changed themselves at every learning step. The change

depends up on

1- The neighborhood of the input pattern.

2- The probability pattern, with which the permissible input pattern is

offered.

2.4 Typical Architecture of NN

Neural nets are often classified as single layer or multilayer. In

determining the number of layers, the input units are not counted as a layer,

because they perform no computation. Equivalently, the number of layers in the

net can be defined to be the number of layers of weighted interconnects links

between the slabs of neurons. This view is motivated by the fact that the

weights in a net contain extremely important information. The net shown bellow

has two layers of weights:

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

8

2.4.1 Single-Layer Net:-

A single-layer net has one layer of connection weight. Often, the units

can be distinguished as input units, which receive signals from the outside

world, and output units, from which the response of the net can be read. In the

typical single-layer net shown in figure bellow the input units are fully

connected to output units but are not connected to other input units and the

output units are not connected to other output units.

(A single-layer neural network)

2.4.2 Multilayer net

A Multilayer net is a net with one or more layers (or levels) of nodes

which is called hidden units, between the input units and the output units.

Typically, there is a layer of weights between two adjacent levels of units

(input, hidden, or output). Multilayer nets can solve more complicated problems

than can single-layer nets, but training may be more difficult. However, in some

cases, training may be more successful because it is possible to solve a problem

that a single-layer net can not be trained to perform correctly at all. The figure

bellow shows the multilayer neural net.

W11

Wi1

Wn1

W1j

Wij

Wnj

W1m

Wim

Wnm

One layer

of weights

Input Output
unit unit

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

9

(A Multilayer Neural Net)

The figure shown bellow is an example of a three-layered neural net work

with two hidden neurons.

V11

Vi1

V1i Vn1

W11

Wj1

Wp1

V1p
W1k

Vip

Vij

Vnj

Wik

Wpk

Vnp

Wjm

Wpm

W1m

Input
unit

Hidden unit
Output

unit

a1 a2 a3

hi h2

e1 e2 e3

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

10

6

4

2

-8 -6 -4 -2
-2

-4

-6

2 4 6 8

2.5 Basic Activation Functions

The activation function (Sometimes called a transfers function) shown in

figure below can be a linear or nonlinear function. There are many different

types of activation functions. Selection of one type over another depends on the

particular problem that the neuron (or neural network) is to solve. The most

common types of activation function are:-

n

Vq  WqjX j
v0

Alternate nonlinear model of an ANN

1- The first type is the linear (or identity) function. Ramp

yqflin (vq)  vq

Flin(vq)

X1 W1

 threshold
 bias

X2
W2 vq

F(0)
yq

axan

Y output

Wn

Xn Summing
Activation function

junction
(cell body)

Synaptic weights
(including  or )

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

11

+1



2- The second type of activation function is a hard limiter; this is a binary (or

bipolar) function that hard-limits the input to the function to either a 0 or a 1 for

the binary type, and a -1 or 1 for the bipolar type. The binary hard limiter is

sometimes called the threshold function, and the bipolar hard limiter is referred

to as the symmetric hard limiter.

a- The o/p of the binary hard limiter:-

 0 if
yq  fhl (vq)  

1 if

vq  0

vq  0

fhl (vq)

vq

b- The o/p for the symmetric hard limiter (shl):-

 1 if

yq  fshl(vq) 
 0 if

vq  0

vq  0

 1 if vq 

0

fshl(vq)

double side اضيا ىمست

vq

3- The third type of basic activation function is the saturating linear function or

threshold logic Unite (tLu) .

This type of function can have either a binary or bipolar range for the saturation

limits of the output. The bipolar saturating linear function will be referred to as

the symmetric saturating linear function.

+1

-1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

12





1 

a- The o/p for the saturating linear function (binary o/p):-



yq  fsl(vq) 



0

vq  1/ 2

if vq

if 1/2 

 -1/2

vq  1/2

 if vq  1/2

  if x  

or y 
 x if     x   

   if
y

Fsi(vq)

 - 



















x

vq

b- The o/p for the symmetric saturating linear function:-

 1


if vq  -1

yq  fssl(vq)  vq if -1   vq   1


 1 if vq  1

fshl(vq)

-1

+1

1
vq

-1

1

0.6

0.4

0.2

-1 -0.75 -0.5 -0.25

 

0.25 0.5 0.75 1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

13

w

4- The fourth type is sigmoid. Modern NN's use the sigmoid nonlinearity which

is also known as logistic, semi linear, or squashing function.

yq  fbs (vq) 



y 
1

1 e
x

1

1 e
vq

fbs (vq)

 و 0 نيب ةروصحم ةونرم اهبو1

5- Hyperbollc tangent function is similar to sigmoid in shape but symmetric

about the origin. (tan h)

y

y  e
x  ex

ex  ex

Ex.1 find y for the following neuron if :- x1=0.5, x2=1, x3=0.7

w1=0, w2=-0.3, w3=0.6 x1

1

x2
w2 y
w3

Sol

net =

x3

 X1W1  X2W2  X3W3

=0.5*0+1*-0.3+(-0.7*0.6)= -0.72

1- if f is linear

y = -0.72

2- if f is hard limiter (on-off)

y = -1

3- if f is sigmoid

+1

0.5

0

x
vq

+1

x

-1

14

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

x1

2
w2

w1

y

x3
w3

1



y 
 1  0.32

1 e(0.72)

4- if f is tan h

0.72

y 
 e

0.72

 0.6169

e0.72  e0.72

5- if f is (TLU) with b=0.6, a=3 then y=-3

 a y  b
  a y  b

f (y)  ky


- b  y b f(y)  
ky

- a y  - b

Ex2:- (H.W)

Find y for the following neuron if

x1 = 0.5, x2 = 1, x3 = -0.7

w1 = 0, w2 = -0.3, w3 = 0.6

 = 1
 x

Sol


Net = WiXi  

= -0.72 + 1 = 0.28

1- if f is linear

y = 0.28

2- if f is hard limiter

y = 1

3- if f is sigmoid

y 
 1

1 e0.28

4-if f is tan sh

 0.569

y  e
0.28  e0.28

 0.272

e0.28  e0.28

e

0  y  b

15

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

x1

x2

x3

w1

w2

w3

5-if f is TLU with b=0.6, +a=3

y=0.28 y  b  y  b

Ex.3

The output of a simulated neural using a sigmoid function is 0.5 find the

value of threshold when the input x1 = 1, x2 = 1.5, x3 = 2.5. and have initial

weights value = 0.2.

Sol

Output = F (net + )

F(net) 
1

1 enet

Net = WiXi

 X1W1  X2W2  X3W3

=(1*0.2)+(1.5*0.2)+(2.5*0.2) = 0.2 +0.30 +0.50 = 1

0.5 
1

1 e(1)

0.5 (1  e
(1)

)  1

0.5 0.5 e(1)  1

0.5 e(1)
 0.5

e(1) 1

 (1 )  ln 1  -1 -     -   1     -1

Y = net

16

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

2.6 The Bias

 ملعتلا نيسحتل فاضت ةتباث ةميق

Some networks employ a bias unit as part of every layer except the output layer.

This units have a constant activation value of 1 or -1, it's weight might be

adjusted during learning. The bias unit provides a constant term in the weighted

sum which results in an improvement on the convergence properties of the

network.

A bias acts exactly as a weight on a connection from a unit whose

activation is always 1. Increasing the bias increases the net input to the unit. If a

bias is included, the activation function is typically taken to be:

Where

1
f (net)

1

if net  0 ;

if net  0 ;

net  b  Xi Wi

i

Figure: - single –layer NN for logic function

b

1

W1

X1 y

X2 W2

Input unit output unit

Same authors do not use a bias weight, but instead use a fixed threshold  for

the activation function.

17

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Where

1
f (net)

1

if net  0 ;

if net  0 ;

net  b  Xi Wi

i

However, this is essentially equivalent to the use of an adjustable bias.

3.1 Learning Algorithms

The NN's mimic the way that a child learns to identify shapes and colors

NN algorithms are able to adapt continuously based on current results to

improve performance. Adaptation or learning is an essential feature of NN's in

order to handle the new "environments" that are continuously encountered. In

contrast to NN's algorithms, traditional statistical techniques are not adoption

but typically process all training data simultaneously before being used with

new data. The performance of learning procedure depends on many factors such

as:-

1- The choice of error function.

2- The net architecture.

3- Types of nodes and possible restrictions on the values of the weights.

4- An activation function.

The convergent of the net:-

Depends on the:-

1- Training set

2- The initial conditions

3- Learning algorithms.

Note:-

The convergence in the case of complete information is better than in the case

of incomplete information

18

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Training a NN is to perform weights assignment in a net to minimize the

o/p error. The net is said to be trained when convergence is achieved or in other

words the weights stop changing.

The learning rules are considered as various types of the:-

3.1.1 Hebbian Learning Rule

The earliest and simplest learning rule for a neural net is generally known

as the Hebb rule. Hebbian learning rule suggested by Hebb in 1949. Hebb's

basic idea is that if a unit Uj receives an input from a unit Ui and both unite are

highly active, then the weight Wij (from unit i to unit j) should be strengthened.

This idea is formulated as:-

wij   xiy j

Where  is the learning rate

w(new) = w(old) + xy

 1 , w is the weight change

 w(new) w(old)  w

-: Hebbian learning محاسن -

هـهو متـي ةولـهسال نـم active o/p والـ active وـكي I/p ـلا مامـنع

weight

 ـلا ميق ليلقتب حمست

. 1 and 0 نم مامختساب and -1 1+ بمال اهزاجنا

-:Hebbian learning مساوئ الـ -

Hebbian learning takes no account of the actual value of the output, only the

desired value. This limitation can be overcome if the weights are adjusted by

amount which depends upon the error between the desired and actual output.

This error is called delta, S, and the new learning rule is called the delta rule.

19

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Algorithm (Hebbian learning Rule)

Step 0: Initialize all weights

wi = 0 (i =1 to n)

Step 1: for each I/p training vector target o/p

Pair. S : t do steps 2- 4.

Step 2 : Set activations for I/P units:

wi = si (i =1 to n)

Step 3 : set activation for O/P unit :

y = t

Step 4 : Adjust the weights for

wi (new) = wi(old) + xiy (i =1 to n)

Adjust the bias:

b(new) = b(old) + y

Note that the bias is adjusted exactly like a weight from a "unit" whose output

signal is always 1.

Ex 4:

A Hebb net for the ABD function: binary input and targets

Input Target

1

1
0

0

1

0
1

0

1

1
1

1

1

0
0

0

w1  x1y, w2  x2y, b  y

Initial weights = 0, w1 =0 , w2 =0, w3 =0

1

2

3

4

x1 x2 b y w1 w2 b w1

0

w2

0
b
0

1

1

0

0

1

0

1

0

1

1

1

1

1

0

0

0

1 1 1

0 0 0

0 0 0

0 0 0

1

1

1

1

1

1

1

1

1

1

1

1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

20

The first input pattern shows that the response will be correct presenting

the second, third, and fourth training i/p shows that because the target value is 0,

no learning occurs. Thus, using binary target values prevents the net from

learning only pattern for which the target is "off".

The AND function can be solved if we modify its representation to

express the inputs as well as the targets in bipolar form. Bipolar representation

of the inputs and targets allows modifications of a weight when the input unit

and the target value are both "on" at the same time and when they are both "off"

at the same time and all units will learn whenever there is an error in the output.

The Hebb net for the AND function: bipolar inputs and targets are:

w1  x1 * y

1 *1 1

w1 (new)  w1 (old)  w1

 0  1  1

Presenting the first input:-

x1 x2 b y w1 w2 b w1

0

w2

0
b
0

1 1 1 1 1 1 1 1 1 1

Presenting the second input:-

x1 x2 b y w1 w2 b w1

1

w2

1
b
1

1 -1 1 -1 -1 1 -1 0 2 0

Presenting the third input:-

x1 x2 b y w1 w2 b w1

0

w2

2
b
0

-1 1 1 -1 1 -1 -1 1 1 -1

x1 x2 b y

1
1

-1

-1

1
-1

1

-1

1
1

1

1

1
-1

-1

-1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

21

T

Presenting the fourth input:-

x1 x2 b y w1 w2 b w1

1

w2

1
b
-1

-1 -1 1 -1 1 1 -1 2 2 -2

The first iteration will be:-

Input target Weight change weights

x1 x2 b y w1 w2 b w1

0

w2

0
b
0

1 1 1 1 1 1 1 1 1 1

1 -1 1 -1 -1 1 -1 0 2 0

-1 1 1 -1 1 -1 -1 1 1 -1

-1 -1 1 -1 1 1 -1 2 2 -2

Second Method

Wij  X i Yj or W X



Y




Ex. 5

What would the weights be if Hebbian learning is applied to the data shown in

the following table? Assume that the weights are all zero at the start.

p x1 x2 y

1

2
3

4

0

0
1

1

0

1
0

1

1

1
0

1

With weights that you’ve just found, what output values are produce with a

threshold of 1, using hyperbolic activation function.

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

22

 x1 x2 y w1 w w1

0

w2

0

1 0 0 1 0 0 0 0

2 0 1 1 0 1 0 1

3 1 0 0 0 0 0 1

4 1 1 1 1 1 1 2

p  0, w1  0, w1  0

p  1, w1  0  x1 * y  0

w 2  0  x 2 * y  0

p  2, w1  0  0 *1  0

w 2  0  1*1  1

p  3, w1  0  1* 0  0

w 2  1  0 * 0  1

p  4, w1  0  1*1  1

w 2  1  1*1  2

 w1  1 , w2  2

4

net  X i

i1

 Wi

p  1,

p  2,

p  3,

p  4,

net  x1 * w1  x 2 * w2

 0 *1  0 * 2  0

net  0 *1 1* 2  2

net 1*1 0 * 2 1

net 1*1 1* 2  3

e(net)  e(net)

output  F(net  ) 




e(net)  e(net)

p x1 x2 net y

1
2

3

4

0
0

1

1

0
1

0

1

0
2

1
3

0
1

0

1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

23

3.1.2 Basic Delta Rule (BDR)

The idea of Hebb was modified to produce the widrow-Hoff (delta) rule

in 1960 or least Mean Square (LMS). The BDR is formulated as:-

wij  (d j  yi) xi

wij   j xi (Delta rule)

w : - is the weight change

 : - is the learning rate

d :- desired output

y :- actual output

 : - error between d and y

Note:-

Before training the net, a decision has to be made on the setting of the learning

rate. Theoretically, the larger  the faster training process goes. But practically,

 may have to be set to a small value (e.g 0.1) in order to prevent the training

process from being trapped at local minimum resulting at oscillatory behavior.

24

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

       

H.W

Q1:-Briefly discuss the following:

A-Dendrites

B-synapses

Q2:- A fully connected feed forward network has 10 source nodes, 2 hidden

layers, on with 4 neurons and other with 3 neurons, and single output neuron.

Construct an architecture graph of this network.

Q3:- A neuron j receives input from four other neurons whose activity levels are

10, -20, 4 and -2. The respective synaptic weights of neuron j are 0.8, 0.2, -1,

and -0.9. Calculate the output of neuron j for the following two activation

functions:-

i) Hard-limiting function

ii) Logistic function F(x)  1/(1 e
x

) .

Q4:- perform 2 training steps of the Delta learning rules using   1 & the

following data specifying the initial weights W1, & the two training pairs

0   2   0  
       

W1  1, x1   1 , d1  1, x 2  1, d2 1

0  1 1 


Q5:-list the features that distinguish the delta rule & Hebb's rule from each

other?

25

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3.1.3 Back Propagation

The determination of the error is a recursive process which start with the

o/p units and the error is back propagated to the I/p units. Therefore the rule is

called error Back propagation (EBP) or simply Back Propagation (BP). The

weight is changed exactly in the same form of the standard DR

wij   j xi

 wij (t 1)  wij (t)    j xi

There are two other equations that specify the error signal. If a unite is an o/p

unit, the error signal is given by:-

  (d j  y j) f j(net j)

Where net j  wij xi  


The GDR minimize the squares of the differences between the actual and the

desired o/p values summed over the o/p unit and all pairs of I/p and o/p vectors.

The rule minimize the overall error E  Ep
by implementing a gradient

descent in E: - where, Ep  1/ 2 j(d j  y j)
2

.

The BP consists of two phases:-

1- Forward Propagation:-

During the forward phase, the I/p is presented and propagated towards the

o/p.

Pattern Hidden o/p
ىلاألو ةلحرمال

Y1

Y2

Yn

26

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

2- Backward Propagation:-

During the backward phase, the errors are formed at the o/p and

propagated towards the I/p

1

2

n

3- Compute the error in the hidden layer.

If y  f (x) 
1

1 e
x

f   y(1 y)

Equation is can rewrite as:-

j  y(1 y)(d j  yj)

The error signal for hidden units for which there is no specified target

(desired o/p) is determined recursively in terms of the error signals of the units

to which it directly connects and the weights of those connections:-

That is

 j  f (net j)k
kwik

Or

 j  y j (1 y j)k
kwik

B.P learning is implemented when hidden units are embedded between input

and output units.

27

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Convergence

A quantitative measure of the learning is the :Root Mean Square (RMS) error

which is calculated to reflect the "degree" of learning.

Generally, an RMS bellow (0.1) indicates that the net has learned its training

set. Note that the net does not provide a yes /no response that is "correct" or

"incorrect" since the net get closer to the target value incrementally with each

step. It is possible to define a cut off point when the nets o/p is said to match the

target values.

- Convergence is not always easy to achieve because sometimes the net gets

stuck in a "Local minima" and stops learning algorithm.

- Convergence can be represented intuitively in terms of walking about

mountains.

Momentum term

The choice of the learning rate plays important role in the stability of the

process. It is possible to choose a learning rate as large as possible without

leading to oscillations. This offers the most rapid learning. One way to increase

the learning rate without leading to oscillations is to modify the GDR to include

momentum term.

This can be achieved by the following rule:-

Wij (t 1)  Wij (t)   jxi   (Wij (t)  Wij (t 1))

Local minima

28

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Where  (0 1) is a constant which determines the effect of the past weight

changes on the current direction of movement in weight space.

A "global minima" unfortunately it is possible to encounter a local

minima, avally that is not the lowest possible in the entire terrain. The net does

not leave a local minima by the standard BP algorithm and special techniques

should be used to get out of a local minima such as:-

1- Change the learning rate or the momentum term.

2- Change the no. of hidden units (10%).

3- Add small random value to the weights.

4- Start the learning again with different initial weights.

3.1.3.1 Back Propagation Training Algorithm

Training a network by back propagation involves three stages:-

1-the feed forward of the input training pattern

2-the back propagation of the associated error

3-the adjustment of the weights

let n = number of input units in input layer,

let p = number of hidden units in hidden layer

let m = number of output units in output layer

let Vij be the weights between i/p layer and the hidden layer,

let Wij be the weights between hidden layer and the output layer,

we refer to the i/p units as Xi , i=1, 2, ….,n. and we refer to the hidden units as

Zj , j=1,….,p. and we refer to the o/p units as yk, k=1,….., m.

1j is the error in hidden layer,

2k is the error in output layer,

 is the learning rate

29

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

 is the momentum coefficient (learning coefficient, 0.0 <  < 1.0,

yk is the o/p of the net (o/p layer),

Zj is the o/p of the hidden layer,

Xi is the o/p of the i/p layer.

 is the learning coefficient.

The algorithm is as following :-

Step 0 : initialize weights (set to small random value).

Step 1 : while stopping condition is false do steps 2-9

Step 2: for each training pair, do steps 3-8

Feed forward :-

Step 3:- Each i/p unit (Xi) receives i/p signal Xi & broad casts this signal

to all units in the layer above (the hidden layer)

Step 4:- Each hidden unit (Zj) sums its weighted i/p signals,

n

Z  inj  Vaj xivij (Vaj is abias)
i1

and applies its activation function to compute its output signal (the

activation function is the binary sigmoid function),

Zjf (Z  inj)  1 / (1 exp - (Z- inj))

and sends this signal to all units in the layer above (the o/p layer).

Step 5:- Each output unit (Yk)sums its weighted i/p signals,

p

y  ink  wok  Zjwjk
j1

(where wok is abias)

and applies its activation function to compute its output signal.

yk  f (y  ink)  1/(1 exp (y  ink)

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

30

back propagation of error:-

step 6 : Each output unit (yk , k= 1 tom) receive a target pattern

corresponding to the input training pattern, computes its error

information term and calculates its weights correction term used

to update Wjk later,

2k  yk (1 yk)*(Tk  yk),

where Tk is the target pattern & k=1 to m .

step 7 : Each hidden unit (Zj, j= 1 top) computes its error information

term and calculates its weight correction term used to update Vij

later,

m

1j  Zj* (1 Zj) * 2kWjk
k1

Update weights and bias :-

step 8: Each output unit (yk, k =1 tom) updates its bias and weights:

Wjk(new)  * 2k * Zj  *[Wjk(dd)],

j= 1 to p

Each hidden unit (Zj, j= 1 to p) update its bias and weights:

Vij(new)  * 1j* Xi  [vij(dd)],

I = 1 to n

Step 9 : Test stopping condition.

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

31

 

EX6

Suppose you have BP- ANN with 2-input , 2-hiddden , 1-output nodes with

sigmoid function and the following matrices weight, trace with 1-iteration.

 0.1  0.3 w 0.3  0.5
V  

0.75 0.2



Where  0.9,   0.45, x (1,0), and Tk  1

Solution:-

11

Input

units

Hidden

units

output

units

1- Forword phase :-

Z  in1  X1V11  X2V21  1* 0.1  0 * 0.75  0.1

Z  in 2  X1V12 X2V22  1* 0.3  0 * 0.2  0.3

Z1  f (Z  in1)  1/(1  exp (Z  in1))  0.5

Z2  f (Z  in 2)  1/(1  exp (Z  in 2))  0.426

y  in1  Z1W11  Z2 W21

 0.5* 0.3  0.426*(-0.5)  -0.063

y1  f (y  in1)  1/(1  exp (y  in1)  0.484

X1

0.1 V11

Z1

-0.3

0.75

V21

V12

0.3 W11

0.2 V22

12

Z2

Y1

-0.5 W21

X2

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

32

 

2- Backward phase :-

2k  yk(1  yk) *(Tk  yk)

21  0.484(1  0.484) * (1  0.484)0.129

m

1j  Z j * (1  Z j) * 2k Wjk

k1

11  Z1(1  Z1) *(21W11)

 0.5 (1- 0.5)*(0.129* 0.3)  0.0097

12  Z2 (1  Z2)*(21W21)

 0.426(1  0.426) *(0.129 *(0.5))  0.015

3- Update weights:-

Wjk (new)  * 2k * Z j   *Wjk (old)
W11  * 21 * Z1   * W11(old)

 0.45* 0.129* 0.5  0.9* 0.3  0.299

W21  * 21 * Z2   * W21(old)
 0.45* 0.129* 0.426  0.9*-0.5  0.4253

Vij(new)  * 1j * Xi   * Vij (old)
V11  * 11 * X1   * V11(old)

 0.45* 0.0097 *1  0.9* 0.1 0.0944

V12  * 12 * X1   * V12 (old)
 0.45* 0.0158*1  0.9*-0.3 0.2771

V21  * 11 * X2   * V21(old)
 0.45* 0.0097 * 0  0.9* 0.75  0.675

V22  * 12 * X2   * V22 (old)
 0.45*-0.0158* 0  0.9* 0.2  0.18

0.0944  0.2771 W 0.299 - 0.4253
V  

0.675 0.18



Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

33

w21

w31

w
w31 21 T1

 y1

w12

w
w y

32
w32 12 T2

2

w13

w 23
w13 T3 w23

y3

3.2 The Hopfield Network

The Nobel prize winner (in physics) John Hopfield has developed the

discrete Hopfield net in (1982-1984). The net is a fully interconnected neural

net, in the sense that each unit is connected to every other unit. The discrete

Hopfield net has symmetric weights with no self-connections, i.e,

Wij  Wji

And Wii  0

In this NN, inputs of 0 or 1 are usually used, but the weights are initially

calculated after converting the inputs to -1 or +1 respectively.

x1

x2

x3

“The Hopfield network“

The outputs of the Hopfield are connected to the inputs as shown in

Figure, Thus feedback has been introduced into the network. The present output

pattern is no longer solely dependent on the present inputs, but is also dependent

on the previous outputs. Therefore the network can be said to have some sort of

memory, also the Hopfield network has only one layer of neurons.

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

34

The response of an individual neuron in the network is given by :-

n

y j 1 if  WijXi

i1 i j

 Tj

y j  0

n

if  WijXi

i1 i j

 Tj

This means that for the jth neuron, the inputs from all other neurons are

weighted and summed.

Note i  j , which means that the output of each neuron is connected to

the input of every other neuron, but not to itself. The output is a hard-limiter

which gives a 1 output if the weighted sum is greater than Tj and an output of 0

if the weighted sum is less than Tj. it will be assumed that the output does not

change when the weighted sum is equal to Tj.

Thresholds also need to be calculated. This could be included in the

matrix by assuming that there is an additional neuron, called neuron 0, which is

permanently stuck at 1. All other neurons have input connections to this

neuron’s output with weight W01, W02, W03,…etc. this provides an offset

which is added to the weighted sum. The relation ship between the offset and

the threshold Tj is therefore:- Tj  -W0j

The output [y] is just the output of neuron 0 which is permanently stuck at 1, so
the formula becomes:- W0   X Y 

t

For example, if the patterns

convert them to

X1  1 1 1 1

X2  1 1 1 1

To find the threshold:-

X1  0011and X2  0101 are to be stored, first

1 1 1 11- The matrix 
1


1 1 1



0

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

35

 1

 1  1
 1 1




2- The transpose of the matrix is 
 1


 1


 1


1 

3- y0 is permanently stuck at +1 , so the offsets are calculated as follows

 1  1  2

 1  1


 1


0



W0   
    

 1


 1
  

 0 
 

 1  1  2



4- These weights could be converted to thresholds to give:-

T1  2

T2  0
Tj -W0j

T3  0

T4

EX7:-

 2

Consider the following samples are stored in a net:-








binary  convert  bipolar

The binary input is (1110). We want the net to know which of samples is the i/p

near to?

Note :-

A binary Hopfield net can be used to determine whether an input vector is a

“known” vector (i.e., one that was stored in the net) or “unknown” vector.

0


1 0 0 1
 

 1 1 1

1 1 0 0   1  1 1 1

0 0 1 1 1 1  1  1

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

36



Solution:- 1-use Hebb rule to find the weights matrix

W11 W12 W13 W14 

W W W W




W  W
21 22 23 24 




31 W32


W41 W42

W33

W43

W34


W44 





Wii=0 (diagonal)

1

1  0




2

W12

3

W13

4

W14 
Wij=Wji 2 W 0 W23 W 


 21

3 W31 W32 0

24 W34 


4 W41
W42 W43 0 

W12  (1*1)  (1*1)  (1* 1)  1

W13  (1* 1)  (1* 1)  (1*1)  1

W14  (1* 1)  (1* 1)  (1*1)  1

W21  W12  1

W23  (1* 1)  (1* 1)  (1*1)  3

W24  (1* 1)  (1* 1)  (1*1)  3

W31  W32  1

W32  W23  3

W34  (1* 1)  (1* 1)  (1*1)  3

W41  W14  1

W42  W24  3

W43  W34  3

 0 1 
1 0

1 1
 




W   3 3
1  3


0 3 


1  3 3 0 

2- The i/p vector x = (1 1 1 0). For this vector, y= (1 1 1 0)

Choose unit y1 to update its activation

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

37

m

y  in1  X1  y jw j1

j

y  in1  1  [(0 *1)  (1*1)  (1*1)  (1* 0)]

101

y  (1110)

Choose unit y2 to up date its activation:-

y  in 2  x 2  y jw j2

j

 1  [(1*1)  (1* 0)  (1* 3)  (0 * 3)]

 1  (2)  1

y  in 2  0

 y  (1010)

 y2  0

Choose unit y3 to update its activation:-

y  in 3  x3  y jw j3

j

 1  [(1* 1)  (1* 3)  (1* 0)  (0 * 3)]

 1  (4)  3

y  in 3  0

 y  (1000)

 y3  0

Choose unit y4 to update its activation:-

y  in4  x 4  y j w j4

j

= 0+ [(1*-1) + (1*-3) + (1*3) + (0*0)]

= 0+ (-1) = -1

y-in4 < 0 y4=0

y = (1000)

3- Test for convergence, false

 The input vector x = (1000), for this vector,

Y= (1 0 0 0)

38

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

y  in1  1

y  in 2  1

y  in3  1  0

y  in 4  1  0

 y  (1100)

 The input vector x= (1 1 0 0)

Y= (1 1 0 0)

y  in1  2  1

y  in 2  2  1

y  in3  4  0

y  in 4  4  0

 y  (1100)

The input is near to the second sample.

True.

Stop.

H.W

1- find the weights and thresholds for a Hopfield network that stores the

patterns:- (0 0 1) and (0 1 1).

2- There are special techniques should be used to get out of local minima,

explain it.

39

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3.3 Bidirectional Associative Memory (BAM)

A bidirectional associative memory (BAM) is very similar to a Hopfield

network, but has two layers of neurons (kosko, 1988) and is fully connected

from each layer to the other. There are feedback connections from the output

layer to the input layer.

The BAM is hetero associative, that is, it accept on input vector on one

set of neurons and produces a related, but different, output vector on another set.

The weights on the connections between any two given neurons from different

layers are the same.

The matrix of weights for the connections from the output layer to the

input layer is simply the transpose of the matrix of weights for the connections

between the input and output layer.

Matrix for forward connection weights = w

Matrix for backward connection weights = wT

There are 2 layers of neurons, an input layer and on output layer. There are no

lateral connections, that is, no two neurons within the some layer are connected,

Recurrent connections, which are feedback connections to a neuron from itself,

may or not be present. Unlike the Hopfield net work, the diagonal of the

connection matrix is left intact, also the number of bits in the input pattern need

not be the same as the output pattern, so the connection matrix is not necessarily

sequare.

“ Layout of BAM Network “

Y1 Wn1
Yi Yn

W1j
W1m

Wim

W11 Wnm

Wi1

x1
W1m

Wij

xi xn

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

40

The BAM operates by presenting on input pattern,[A], and passing it through

the connection matrix to produce an output pattern,[B] .so:-

B[k]  f ([A(k)][w])

Where

K: indicates time

A(k), B(k) :- are equivalent to [x] and [y]

F: activation function

W:- weight matrix between layer 1 & layer 2

The output of the neurons are produced by the function f() which, like the

Hopfield, is a hard-limiter with special case at  .

This output function is defined as follows :-

outi

outi

(k 1)  1

(k  1)  0

if Neti (k)  0

if Neti (k)  0

outi (k 1)  outi (k) if Neti  0 unchanged

The output [B], is then passed back through the connection matrix to produce a

new input pattern, [A].

A(k 1)  f ([B(k)][W
T

])

The [A] & [B] pattern are passed back and forth through the connection matrix

in the way just described unitl there are no further changes to the values of [A]

& [B]

 - BAMمحاسن الـ

 هال 2- ةيرصالب مةظنالاو ةيظرانتلا رئامولا عم ةمجنسم1

 عاجرتسلااو معللتا يةعمل في يعسر بارتقا

noisy data -3لا مض ةناصح لها-

 -ـلا وئاسم ةبتثا زالواا4

BAM 1خزلا سعة

 لها استجابة 2-محمدة

 ةفئزا

41

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

1 1

3 3 3

 انايحا3- عقوتم ريغ كولس كلست ً

No learning -4

EX8:- let us try to train a network to remember three binary – vector pairs.

Ai, Bi have the same number of component, using the Hebb rule to star :-

A1  (1 0 0) B1  (0 0 1)

A2  (0 1 0) B2  (0 1 0)

A3  (0

1- Find the weight matrix?

0 1) B3  (1 0 0)

2- Apply an input vector A1 = (1 0 0) to test the net to remember A1.

Sol

W  [A
T

][B]
1

W1

W2  [A2][B2]

1



 1 1 1 

W2 




W  [A
T

][B]

1


1 1 1 

W3  1 1 -1 -1 1 1 1 

 1   1 1 1

W  W1  W2  W3

1 1 1   1 1 1  1 1 1  1 1 3 

W 


1 1 1



1 1 1




1 1 1




1 3 1










Test for A1

 1  1



1
 -1 -1 1


1

  

1

1

1 

1


1 1 1 1

T

 1  -1 1 -1 1 1 1

1
  1 1 1 

       

1 1 1 1 1 1   1 1 1 3 1 1

42

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

A1 * W = B1

1 1 3 

1 1 11 3 1  3

 3 1 1

3  3 50 0 1 B1

 3 5

Or

W = [AT] [B]

 ةرصتحم قةيطر

 1 1 1 1 1 1  1 1 3 

W 

1 1 1

 
1 1 1




1 3 1




     

1 1 1   1 1 1 3 1 1

And then continues the same steps .

H.W

Q1: find the weights and thresholds for a Hopfield network that stores the

pattern 001 and 011.

Q2- A BAM is trained using the following input and output patterns:-

Input Output

000010010000010 01

000010000010000 10

000100100100000 11

Find the weights that would be generated for the BAM network, and check that

the input patterns generate the corresponding output patterns.

Q3- Briefly explain the following :-

1- Single layer network , Multi layer network

2-ANN

3- Areas of Neural network

4- supervised Learning , unsupervised Learning

5-Recurrnt, non recurrent

6-Advantage & disadvantage of BAM

7- write the complete alg. Of BAM.

43

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

1

w

3.4 Adaline Neural Network
Adaline is the short from of "Adaptive linear neuron" and was presented

in 1960 by B. Widrow and N. E. Hoff [WH1960]. The network is single

layered, the binary values to be assumed for input and output are -1 and +1

respectively. Figure bellow shows the general topology of the network.

Y1 Y2 Y3 Y4

w
w w

Where

bias

X1 X2 X3

“Topology of Adaline “

X = input vector (including bias)

Y=output vector = f(w*x)

W=weight matrix

An Adaline can be trained using the delta rule, also known as the least mean

sequares (LMS) or widerow- Holf rule. The learning rule minimize the mean

squared error between the activation and the target value. This allows the net to

continue learning on all training patterns, even after the correct output value is

generated (if a threshold function is applied) for some patterns.

When the Adaline is in its tracing or learning phase, there are three factors to be

taken into account

1- the inputs that are applied are chosen from a training set where the desired

response of the system to these inputs is known.

2- the actual output produced when an input pattern is applied is compared with

the desired output and used to calculate an error 

3- the weight are adjusted to reduce the error .

44

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

This kind of training is called supervised learning because the output are

known and the network is being forced into producing the correct outputs.

Three additional points need to be included before the learning rule can be

used:-

4- the constant,  , has to be decided. The original suggestion for the Adaline

was that  is made equal to:-

  1/(n 1)

Where n is the number of inputs.

The effect of adjusting the weights by this amount is to reduce the error

for the current input pattern to zero. In practice if  is sat to this value the

weights rarely settle down to a constant value and a smaller value is generally

used.

5- the weight are initially set to a small random value. This is to ensure that the

weights are all different.

6- the offset, w0 gets adjusted in the same way as the other weights, except that

the corresponding input x0 is assumed to be +1.

The steps for solving any question in Adaline by using Delta-rule are :-

1-compute the learning coefficient  :-

  1/(n 1)

n= number of inputs

2-comput neti :-

3- compute the error 

  d  neti

neti  xi .wi

i1

d is the desired o/p

4- compute the value of  xi for all weights

5-find the total for all weight total  x i

45

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

6- find mean i

Where :-

mean i  total /p

P:- is the no. of states

new old

7- adjust the weights depending on meani Wi  Wi  meani

EX9 :-

Adaline is given the four different input and output combinations of the two

input AND function, y  x1  x2 , as training set

w 0  0.12

w1  0.4

w 2  0.65

y  x1  x2

bias

X2

X1

X0

First the input pattern : +1 -1 -1

Weights : -0.12 0.4 0.65

n

net  xi .wi

i1

= (+1*-0.12)+(-1*0.4) +(-1*0.65) = -1.17 (actual output)

d = desired output = -1 (for first pattern)

w2

 w1

 w0 D
es

ir
ed

 o
/p

X1 X2 Y

0 0 0

0 1 0

1 0 1

1 1 0

X0 X1 X2 Y

+1

+1

+1

+1

-1

-1

+1

+1

-1

+1

-1

+1

-1

-1

+1

-1

46

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

1

0

2

  d  net

= -1-(-1.17) =0.17 (error)

  0.1

Also we must compute :-

wij   xi

For convenience , these figures have been rounded to two places after the

decimal point, so become :-  x0  (0.1* 0.17 * 1)  0.017   0.02

 جئاتنلا ىلع لصحن اههبو t puniلا ةيقب عم ملعلاب رمتسن -:ةظحلام

 :-ةيلاتلا

 w 0 w1 w 2

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2

+1

+1
+1

+1

-1

-1
+1

+1

-1

+1
-1

+1

-0.12 -

0.12
-0.12

-0.12

0.40

0.40
0.40

0.40

0.65

0.65
0.65

0.65

-1.17

0.13
-0.37

0.93

-1

-1
+1

-1

0.02

-0.11
0.14

-0.19

-0.02

0.11
0.14

-0.19

-0.02

-0.11
-0.14

-0.19

total -0.14 0.04 -0.46

meanj  total(wij)/ p p  4

Mean0 = -0.14/4 =-0.035 = -0.04

Mean1 = -0.04/4 =-0.01

Mean2 = -0.46/4 =-0.115 = -0.12

W
new

 W
old
 meanj

ij ij

W
new

=-0.12+(-0.04)=-0.16

W
new

=-0.40+(0.01)= -0.41

W
new

=-0.66+(-0.12) = 0.53 ,

Continue until x  0

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2

+1
+1
+1

+1

-1
-1
+1

+1

-1
+1
-1

+1

-0.16
-0.16
-0.16

-0.16

0.41
0.41
0.41

0.41

0.53
0.53
0.53

0.53

-1.10
0.04
-0.25

0.78

-1
-1
+1

-1

0.01
-0.10
0.13

-0.18

-0.01
0.10
0.13

-0.18

-0.01
-0.10
-0.13

-0.18

 t otal -0.14 0.04 -0.44

 mean -0.04 0.01 -0.11

47

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

w 0 w1 w 2

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2

+1

+1
+1

+1

-1

-1
+1

+1

-1

+1
-1

+1

-0.50

-0.50
-0.50

-0.50

0.50

0.50
0.50

0.50

-0.50

-0.50
-0.50

-0.50

-0.50

-1.50
0.50

-0.50

-1

-1
+1

-1

-0.05

0.05
0.05

-0.05

0.05

-0.05
0.05

-0.05

0.05

0.05
-0.5

-0.5

total 0.00 0.00 0.00

The network has successfully found a set of weight that produces the correct

outputs for all of the patterns.

H.W

Q1:A 2-input Adaline has the following set of weights w0 =0.3 , w1=-2.0 ,w2 =

1.5 When the input pattern is x0 = 1 , x1= 1 , x2 = -1

And the desired output is 1

a- what is the actual output?

b- what is the value of ?

c- Assuming that the weights are updated after each pattern and the value  is

1/n+1 , what are the new values for the weights?

d- using these new values of weights, what would the output be for the same

input pattern?

Q2: with  set to 0.5, calculated the weights (to one decimal place) in the

following example after are iteration through the set of training patterns.

a- updating after all the patterns are presented

b- updating after each pattern is presented

X0 X1 X2 W0 W1 W2 net d x0 x1 x 2

+1

+1
+1

+1

-1

-1
+1

+1

-1

+1
-1

+1

-0.2 0.1 0.3 -0.6 +1

+1
-1

+1

0.8 -0.8 -0.8

48

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3.5 Kohonen Network

Teuvo kohonen presented the self-organizing feature map in 1982. it is an

unsupervised, competitive learning , clustering network in which only one

neuron (or only one neuron in a group) is “on” at a time.

The self-organizing neural networks, also called (topology –preserving

maps), assume a topological structure among the cluster units. This property is

observed in the brain, but is not found in other artificial neural networks.

There are m cluster units arranged in a one –or two – dimensional array.

ةنيمع . ةصف اله ةعومجملك تامولالمع عيامجميوه من :Cluster

The weight vector for cluster units serves as an exemplar of the input patterns

associated with that cluster. During the self organizing process, the cluster unit

whose weight vector matches the input pattern most closely (typically, the

square of the minimum Euclidean distance) is chosen as the winner. The

winning unit and its neighboring units update their weights. The weight

vectors of neighboring units are not, in general, close to the input

pattern.

3.5.1 Architecture

A kohonen network has two layers, an input layer to receive the input and

an output layer. Neurons in the output layer are usually arranged into a regular

two dimensional array. The architecture of the kohonen self-organizing map is

shown bellow.

(kohonen self-organizing map)

Y1

Wn1
W 1j

W11 Wi1

Yj

Wnj

Wij

W1m

W1m

Ym

Wnm

x1 xi xn

49

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

* * * [* (*[#] *) *] * *
R2 R1 R0 R1 R2

Linear array 10 cluster

Neighborhoods of the unit designated by # of radii R=2 (1& 0) in a one –

dimensional topology (with 10 cluster units) are shown in figure (4.2)

* * * * * * *

* *

* *

* *

* *

* *

* * * * * * *

Neighborhoods for rectangular grid

R0 = ……..

R1 =

R2 = - - - - -

* * * * * * * *

The Neighborhoods of unit radii R=2 (1 & 0) are shown in figure (4.3) for a

rectangular grid and in figure (4.4) for hexagonal grid (each with 49 units). In

each illustration, the winning unit is indicated by the symbol “#” and the other

units are denoted by “*” .

* Kohonen NN can be used in speech recognizer

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

50

R1

R 0

* * *

*

*

*

*

*

R2 * * * *

*

* *

*

* *

*

* * * * * * *

Neighborhoods for hexagonal grid

R0 = ……..

R1 =

R2 = - - - - -

3.5.2 Algorithm

Step 0 : initialize weights wij

Set topological neighborhood parameters

Set Learning rate parameters.

Step1:while stopping condition is false, do step 2-8

Step2: for each input vector x, do step 3-5

Step3: for each j, compute distance

D(j)  (x i  w ij)
i

Euclidean distances

Step4 : find index J such that D(J) is a minimum

Step5: for all units j within a specified neighborhood of J, and for all i:

Wij(new)  Wij(old)  [Xi  Wij(old)]

2

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

51



Step6: update learning rate.

Step7: Reduce radius of topological neighborhood at specified times

Step8: Test stopping condition.

EX 10

A kohonen self-organizing map (SOM) to be cluster four vectors

vector1  (1 1 0 0)

vector2  (0 0 0 1)

vector3  (1 0 0 0)

vector4  (0 0 1 1)

The maximum no. of clusters to be formed is m=2 with learning rate  0.6

Sol:

With only 2 clusters available, the neighborhood of nodJ is set so that only one

cluster up dates its weight at each step

Initial weight matrix:

0.2 0.8

0.6 0.4




 






1- for the first vector

x1 x 2

(1 1

0.5


0.9

x3

0

0.7

0.3



x 4

0)

D(i)  (1 0.2)
2
 (1 0.6)

2
 (0  0.5)

2
 (0  0.9)

2

D(2)  (1 0.8)
2
 (1 0.4)

2
 (0  0.7)

2
 (0  0.3)

2

J  2 (The input vector) is closest to output node 2)

 The weight on the winning unit is update:-

W21(new)  W12 (old)  0.6(xi  W12 (old))

 0.8  0.6(1- 0.8)  0.92

W22 (new)  0.4  0.6(1 - 0.4)

 0.4 0.36 0.76

 1.86

 0.98 (Minimum)

52

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)





8

W23 (new)  0.7  0.6(0- 0.7)

 0.28

W24 (new)  0.3  0.6(0- 0.3)

 0.12

0.2

0.6

0.92
0.76




This gives the weight matrix  
0.5


0.9

0.28

0.12



2- for the second vector 0 0 0 1

D(i)  (0  0.2)
2
 (0  0.6)

2
 (0  0.5)

2
 (1 0.9)

2
 0.66 minimum

D(2)  (0  0.92)
2
 (0  0.76)

2
 (0  0.28)

2
 (1 0.12)

2

J  1(The i/p vector is closest to o/p node 1)

After update the first column of the weight matrix:-

 2.2768

0.08 0.92

0.24 0.76




 






3- for the third vector (1 0 0 0)

0.20


0.96

0.28

0.12





D(i)  (0.08)
2
 (0  0.24)

2
 (0  0.20)

2
 (0  0.96)

2
 1.856

D(2)  (1 0.92)
2
 (0  0.76)

2
 (0  0.28)

2
 (1 0.12)

2

 2.2768 minimum

J  2 (The i/p vector is closest to o/p node (2))

After update the second column of the weight matrix:-

0.08 0.968 

0.24 0.304




 
0.20


0.96

4- for the fourth vector (0 0 1 1)

0.112 

0.0.4



53

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

8

8

D(i)  (0  0.08)
2
 (0  0.24)

2
 (1 0.20)

2
 (1 0.96)

2
 0.7056 minimum

D(2)  (0  0.968)
2
 (0  0.304)

2
 (1 0.112)

2
 (1 0.048)

2

J  1(the i/p vector is closest to o/p node 1)

After update the first column of the weight matrix :-

 2.724

0.032 0.968 

0.096 0.304




 






 Reduce the learning rate

0.680


0.984

0.112 

0.0.4



 (t 1)*  (t)  0.5*(0.6)  0.3

 After one iteration the weight matrix will be:-

0.032 0.970

0.096 0.300




 
0.680


0.984

H.W

0.110

0.04



Find the output node with minimum distance then update its reference vector

only  0.5

X1=0.5 X2=0.2

C1 C2 C3 C4 C5

0.7 0.9
0.8

0.3
0.6

0.1
0.5 0.4 0.3

0.2

X1 X2

54

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3.6 Self- Organizing Networks

Self –organizing networks mean that the systems are trained by showing

examples of patterns that are to be classified, and the network is allowed to

produce its own output code for the classification.

In self – organizing networks the training can be supervised or

unsupervised. The advantage of unsupervised learning is that the network finds

its own energy minima and therefore tends to be more efficient in terms of the

number of patterns that it can accurately store and recall.

In self – organizing networks four properties are required:-

1- The weight in the neurons should be representative of a class of patterns.

So each neuron represents a different class

2- Input patterns are presented to all of the neurons, and each neuron

produces an output. The value of the output of each neuron is used as a

measure of the match between the input pattern and the pattern stored in

the neuron

3- A competitive learning strategy which selects the neuron with the largest

response.

4- A method of reinforcing the largest response.

55

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

3.7 Adaptive Resonance Theory (ART)

Adaptive resonance theory (ART) was developed by Carpenter and

Grossberg (1987). One form, ART 1, is designed for clustering binary vectors,

another, ART2 also by Carpenter and Grossberg (1987).

These nets cluster inputs by using unsupervised learning input patterns may

be presented in any order. Each time a pattern is presented, an appropriate

cluster unit is chosen and that cluster’s weights are adjusted to let the cluster

unit learn the pattern.

3.7.1 Basic Architecture

Adaptive resonance theory nets are designed to allow the user to control the

degree of similarity of patterns placed on the same cluster. ART1 is designed to

cluster binary input vectors. The architecture of an ART1 net Consists of the

following units:-

1- Computational units.

2- Supplemental units.

1- Computational units:-

The architecture of the computational units for ART1 consists of three

field of unites:-

1- The F1 units (input and interface units)

2- The F2 units (cluster units)

3- Reset unite

This main portion of the ART1 architecture is illustrated in figure

bellow:-

56

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Y1 YJ Yr

R

X1 XJ Xn

S1 Si Sn

F2 Layer(cluster units)

F1(b)Layer(Interface)

"Basic structure of ART1"

F1(a) Layer(input)

The F1 layer can be considered to consist to two of two parts:-

1- F1 (a) the input units

2- F1 (b) the interface units.

Each unit in the F1 (a) (input) layer is connected to the

corresponding unit in the F1 (b) (interface) layer .Each unit in the F1 (a)

&F1 (b) layer is connected to the reset unit, which in turn is connected to

every F2 unit. Each unit in the F1 (b) is connected to each unit in the F2

(cluster) by two weighted pathways:-

1- Bottom –up weights:-

The F1(b) unit Xi is connected to the F2 unit Yj by bottom –up weights bij.

2- Top- down weights:-

Unit Yj is connected to unit Xi by top-down weights tji.

The F2 layer is a competitive layer in which only the uninhibited node

with the largest net input has a non zero activation.

57

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

G2

R

F1 (a) layer (input)

F2 layer (cluster)

2-Supplemental Units:-

The Supplemental Units shown in figure (4-6) are important from a

theoretical point of view. There are two Supplemental Units called gain

control units, these are:-

1- Gain1 g1 or G1

2- Gain2 G2

In addition to the reset unit R

+ +

_

bij tji

_ + +
 F1 (b) layer (interface) G1

+ + +

“The Supplemental Units for ART1”

Excitatory signals are indicated by (+) and inhibitory signals by (-), a

signal is sent whenever any unit in the designated layer is (on).

Each unit in either the F1 (b) or F2 layer of the ART1 net has three sources

from which it can receive a signal

1- F1(b) can receive signals from :-

- F1(a) (an input signal)

- F2 node (top –down signal)

- G1 unit.

2- F2 unit can receive a signal from :-

- F1 (b) (an interface unit)

- R unit (reset unit)

- G2 unit

58

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

An F1(b) (interface) or F2 unit must receive two excitatory signals in

order to be (on). Since there are three possible sources of signals, this

requirement is called the two- thirds rule.

The reset unit R controls the vigilance matching (the degree of similarity

required for patterns to be assigned to the same cluster unit is controlled by a

user – specified parameter, known as the vigilance parameter). When any unit in

the F1 (a) is on, an excitatory signal is sent to R. the strength of that signal

depends on how many F1(a) are (on). R also receives inhibitory signals from the

F1(b) that are (on). If enough F1(b) are (on), unit R is prevented from firing . If

unit R does fire, it inhibits any F2 unit that is (on). This forces the F2 layer to

choose a new winning node.

There are two types of learning that differ both in their theoretical

assumptions and in their performance characteristics can be used for ART nets:-

fast learning

It is assumed that weight updates during resonance occur rapidly, in fast

learning, the weight reach equilibrium on each trial. It is assumed that the

ART1net is being operated in the fast learning mode.

slow learning

The weight changes occur slowly relative to the duration of a learning trial,

the weights do not reach equilibrium on a particular trail.

59

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

H.W

Q1: Write the complete algorithm for kohonen neural network?

Q2: there are two basic units in ART1 architecture, list them and draw the

figure for each one of them.

Q3: there are two kinds of learning in ART neural network. Briefly explain

each one of them. Which kind does ART1 use?

Q4: Define the following expressions:-

1- Euclidean Distances

2- Vigilance matching

3- Bottom –up and top- down weights

4- Two-thirds rule

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

60

4.1 Genetic Algorithms (GA)

Structure of Adaptive Algorithm

A genetic algorithm is a search procedure modelled on the mechanics of

natural selection rather than a simulated reasoning process. Domain Knowledge

is embedded in the abstract representation of a candidate solution termed an

organism. Organisms are grouped into sets called populations. Successive

population are called generation. The aim of GA is search for goal.

A generational GA creates an initial generation G(0) , and for each

generation ,G(t) , generates a new one ,G(t+1) . An abstract view of the

algorithm is:-

Adaptive algorithm

Fuzzy system (FS) Evolutionary computation

(EC)

Classifier

System

(CS)

Genetic

Algorithm

(GA)

Neural computing (NN)

Genetic

Programming

(Gp)

Evolutionary

Programming

(EP)

Evolutionary

Strategies

(ES) (DNA)

61

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

Generate initial population, G(0);

Evaluate G(0);

t:=0;

Repeat

t:=t+ 1

Generate G(t) using G(t-1);

Evaluate G(t);

Until solution is found.

4.1.1 Genetic Operators

The process of evolving a solution to a problem involves a number of

operations that are loosely modeled on their counterparts from genetics .

Modeled after the processes of biological genetics , pairs of vectors in the

population are allowed to “ mate” with a probability that is proportional to their

fitness . the mating procedure typically involves one or more genetic operators .

The most commonly applied genetic operators are :-

1- Crossover.

2- Mutation.

3- Reproduction.

1- Crossover

Is the process where information from two parents is combined to form

children. It takes two chromosomes and swaps all genes residing after a

randomly selected crossover point to produce new chromosomes.

This operator does not add new genetic information to the population

chromosomes but manipulates the genetic information already present in the

mating pool (MP).

62

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

The hope is to obtain new more fit children It works as follows :-

1- Select two parents from the MP (The best two chromosomes) .

2- Find a position K between two genes randomly in the range (1, M-1)

M = length of chromosome

3- Swap the genes after K between the two parents.

The output will be the both children or the more fit one.

1- a Order crossover (OX1)

The order crossover operator (Figure 4) was proposed by Davis (1985). The

OX1 exploits a property of the path representation, that the order of cities (not

their positions) are important. It constructs an offspring by choosing a sub tour

of one parent and preserving the relative order of cities of the other parent.

Order crossover (OX1)

For example, consider the following two parent tours:

and suppose that we select a first cut point between the second and the third

bit and a second one between the fifth and the sixth bit. Hence,

63

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

The offspring are created in the following way. First, the tour segments between

the cut point are copied into the offspring, which gives

Next, starting from the second cut point of one parent, the rest of the

cities are copied in the order in which they appear in the other parent, also

starting from the second cut point and omitting the cities that are already

present. When the end of the parent string is reached, we continue from its first

position. In our example this gives the following children:

 Partially mapped crossover (PMX)

 Cycle crossover (CX)

 Order based crossover (OX2)

 Position based crossover (POS)

 Heuristic crossover

 Genetic edge recombination crossover (ER)

 Sorted match crossover

 Maximal preservative crossover (MPX)

 Voting recombination crossover (VR)

 Alternating position Crossover (AP)

64

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

2- Mutation

The basic idea of it is to add new genetic information to chromosomes. It is

important when the chromosomes are similar and the GA may be getting stuck

in Local maxima. A way to introduce new information is by changing the allele

of some genes. Mutation can be applied to :-

1- Chromosomes selected from the MP.

2- Chromosomes that have already subject to crossover.

The Figure bellow illustrates schematically the GA approach.

3- Reproduction

After manipulating the genetic information already present in the MP by

fitness function the reproduction operator add new genetic information to the

population of the chromosomes by combining strong parents with strong

children , the hope is to obtain new more fit children . Reproduction imitate to

the natural selection.

This schematic diagram of a genetic algorithm shows the functions that are

carried out in each generation. Over a number of such generation the initial

population is evolved to the point where it can meet some criterion with respect

the problem at hand .

65

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

“Genetic Algorithm approach “

New

Vector

Population

Old Vector

Population

Evaluate
each

Vector For

Fitness

Select Pairs
Of Vectors

For Mating

On basis of

fitness

Apply
Crossover

Mutation

Operators

Initialize First

Population

Replace Old Population With new

Population until some criterion has

been achieved

66

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

4.2 Genetic Programming (GP)

Genetic programming (GP) is a domain – independent problem – solving

approach in which computer programs are evolved to solve, or approximately

solve problems. Thus, it addresses one of the central goals of computer science

namely automatic programming. The goal of automatic programming is to

create, in an automated way, a computer program that enables a computer to

solve a problem.

GP is based on reproduction and survival of the fittest genetic operations

such as crossover and mutation. Genetic operation are used to create new

offspring population of individual computer programs from the current

population of programs .

GP has several properties that make it more suitable than other paradigms

(e.g. . best – first search , heuristic search , hill climbing etc .) , these

properties are :-

1- GP produces a solution to a problem as a computer program. Thus GP is

automatic programming.

2- Adaptation in GP is general hierarchical computer programs of

dynamically varying size & shape.

3- It is probabilistic algorithm.

4- Another important feature of GP is role of pre processing of inputs and

post processing of outputs .

To summarize, genetic programming includes six components, many very

similar to the requirements fo GAs:

1- A set of structures that undergo transformation by genetic operators.

2- A set of initial structures suited to a problem domain.

3- A fitness measure, again domain dependent, to evaluate structures.

4- A set of genetic operators to transform structures.

67

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

5- Parameters and state descriptions that describe members of each

generation.

6- A set of termination conditions.

EX. 11:-

By using GA step by step, find the maximum number in 0 to 31.let k=3 and

population size=4 ,and the initial population is:-

14 01110

3 00011 population

25 11001

21 10101

Fitness function will be:-

25&21

3&14

25&21

1 1 0 0 1 25
1 0 1 0 1 21

1 1 1 0 1

29

1 0 0 0 1 17

14&3

0 1 1 1 0 14
0 0 0 1 1 3

0

1

0

1 1

11

0 0 1 1 0 6

the new population will be an array and we choose position [16] randomly to do

mutation on it:-

Mutation

Mutation 0 1

:

1 1 1 0 1

1 0 0 0 1

0 1 0 1 1

0 0 1 1 0

1 1 1 0 1

1 0 0 0 1

0 1 0 1 1

1 0 1 1 0

68

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

After Mutation the new population will be:

1 1 1 0 1 = 29
1 1 0 0 1 =25

1 0 1 0 1 =21 reproduction

1 0 1 1 0 =22

Because the mutation we replace 17 with 22 in the new population.

EX 12

Apply GA in travelling salesman to find the shortest path . let k=2 and the

initial population is:-

A B C D E =12

B C D E A =10

A C D B E =11

E C A D B =11 initial

B A D C E =10 population

D E B A C =10

B C D E A =10

B A D C E =10

B C D A E = 6

B A D E C =13

69

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

D E B A C =10

A C D B E

D E B A C = 10

A C D E B =9

E C A D B = 11

A B C D E =12

THE NEW POPULATION IS:-

B C D A E = 6

B A D E C =13
D E B A C = 10

A C D E B = 9
E C A D B =11

A B C D E =12

 سفنب)قباالس ليلجا نم تامووسموكرلا لضفا و ميملجا ليلجا نم تامووسموكرلا لضفا هخأن أما

crossoverونعمل(عمد المجتمع لمعن وا امهل طقف ميلجا ليجللcrossover

H.W

Q1: Can the bit string 0 1 0 1 0 1 0 1 be the result of crossing over the

following pairs of parents?:-

a- 11111111 and 00000000

b-01010101 and 11111111

c-10100101 and 01011010

Q2: What is genetic algorithm (GA). Explain its algorithm.

E C A D B =11

A B C D E =12

Fourth Class (S.W & C.S) Machine Learning (ANN & GA)

70

Q3: What are the most commonly operators used in GA, list it only, then

draw the figure which illustrates schematically the GA approach.

Q4: Adaptive algorithm includes GA and GP in one port of it. Illustrates

schematically the main structure of adaptive algorithm.

Resources

www.uotechnology.edu.iq/dep-cs

http://www.uotechnology.edu.iq/dep-cs

